13. Moments

From Mechanics

(Difference between revisions)
Jump to: navigation, search
Current revision (13:08, 27 April 2011) (edit) (undo)
 
(6 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #797979" width="5px" |  
| style="border-bottom:1px solid #797979" width="5px" |  
-
{{Selected tab|[[13. Moments|Theory]]}}
+
{{Selected tab|[[13. Moments|Theory]]}}
{{Not selected tab|[[13. Exercises|Exercises]]}}
{{Not selected tab|[[13. Exercises|Exercises]]}}
 +
{{Not selected tab|[[13. Video|Video]]}}
| style="border-bottom:1px solid #797979" width="100%"|  
| style="border-bottom:1px solid #797979" width="100%"|  
|}
|}
 +
== '''Key Points''' ==
-
 
+
The moment of a force about the point <math>O</math> is the product of the force and the perpendicular distance to the line of action of the force from <math>O</math>.
-
Key Points
+
-
 
+
-
The moment of the force about the point O is the product of the force and the perpendicular distance to the line of action of the force from O.
+
-
 
+
-
 
+
[[Image:T13.1.GIF]]
[[Image:T13.1.GIF]]
-
 
<math>\text{Moment }=Fd</math>
<math>\text{Moment }=Fd</math>
- 
[[Image:T13.2.GIF]]
[[Image:T13.2.GIF]]
- 
<math>\text{Moment }=Fd\sin \theta </math>
<math>\text{Moment }=Fd\sin \theta </math>
 +
Clockwise moments are negative.
-
Clockwise moments are negative.
 
Anti-clockwise moments are positive.
Anti-clockwise moments are positive.
 +
The resultant moment about <math>O</math> is the sum of the moments about <math>O</math>.
-
Example 13.1
+
 
 +
'''[[Example 13.1]]'''
[[Image:ex13.1whole.GIF]]
[[Image:ex13.1whole.GIF]]
 +
'''[[Example 13.2]]'''
 +
[[Image:ex13.2.GIF]]
-
 
+
'''[[Example 13.3]]'''
-
Example 13.2
+
-
 
+
-
[[Image:ex13.2.GIF]]
+
-
 
+
-
Example 13.3
+
For the rectangular lamina shown below, find the total moment of the forces acting, about the corner marked O.
For the rectangular lamina shown below, find the total moment of the forces acting, about the corner marked O.
- 
[[Image:ex13.3.GIF]]
[[Image:ex13.3.GIF]]
-
Solution
+
'''Solution'''
{| width="100%" cellspacing="10px" align="center"
{| width="100%" cellspacing="10px" align="center"
|align="left"| Force
|align="left"| Force
-
| valign="top"|Moment
+
| valign="top"|Moment (Nm)
|-
|-
-
|5N at O
+
|5N at <math>O</math>
| valign="top"| <math>5\times 0=0</math>
| valign="top"| <math>5\times 0=0</math>
|-
|-
|8 N
|8 N
-
|valign="top"| <math>-8\times 1.2=-9.6</math>
+
|valign="top"| <math>-8\times 1\textrm{.}2=-9\textrm{.}6</math>
|-
|-
- 
- 
- 
|7 N
|7 N
| valign="top"| <math>7\times 0=0</math>
| valign="top"| <math>7\times 0=0</math>
|-
|-
|6 N
|6 N
-
| valign="top"| <math>-6\times 0.5=-3</math>
+
| valign="top"| <math>-6\times 0\textrm{.}5=-3</math>
|-
|-
|5 N
|5 N
-
| valign="top"| <math>5\times 1.2=6</math>
+
| valign="top"| <math>5\times 1\textrm{.}2=6</math>
|-
|-
|4 N
|4 N
-
| valign="top"| <math>4\times 0.5=2</math>
+
| valign="top"| <math>4\times 0\textrm{.}5=2</math>
|-
|-
|Total Moment
|Total Moment
-
| valign="top"| <math>0-9.6+0-3+6+2=-4.6\text{ Nm}</math>
+
| valign="top"| <math>0-9\textrm{.}6+0-3+6+2=-4\textrm{.}6\text{ Nm}</math>
|}
|}

Current revision

       Theory          Exercises          Video      

Key Points

The moment of a force about the point \displaystyle O is the product of the force and the perpendicular distance to the line of action of the force from \displaystyle O.

Image:T13.1.GIF \displaystyle \text{Moment }=Fd

Image:T13.2.GIF \displaystyle \text{Moment }=Fd\sin \theta

Clockwise moments are negative.

Anti-clockwise moments are positive.

The resultant moment about \displaystyle O is the sum of the moments about \displaystyle O.


Example 13.1

Image:ex13.1whole.GIF

Example 13.2

Image:ex13.2.GIF


Example 13.3

For the rectangular lamina shown below, find the total moment of the forces acting, about the corner marked O.

Image:ex13.3.GIF

Solution

Force Moment (Nm)
5N at \displaystyle O \displaystyle 5\times 0=0
8 N \displaystyle -8\times 1\textrm{.}2=-9\textrm{.}6
7 N \displaystyle 7\times 0=0
6 N \displaystyle -6\times 0\textrm{.}5=-3
5 N \displaystyle 5\times 1\textrm{.}2=6
4 N \displaystyle 4\times 0\textrm{.}5=2
Total Moment \displaystyle 0-9\textrm{.}6+0-3+6+2=-4\textrm{.}6\text{ Nm}