Solution 14.3
From Mechanics
(Difference between revisions)
(New page: The diagram shows the forces acting. Image:14.3.gif Taking moments about the left hand support: <math>\begin{align} & {{R}_{B}}\times 3=49\times 1+196\times 1\textrm{.}5 \\ & ...) |
|||
(One intermediate revision not shown.) | |||
Line 3: | Line 3: | ||
- | [[Image:14. | + | [[Image:14.3a.gif]] |
Line 30: | Line 30: | ||
<math>\begin{align} | <math>\begin{align} | ||
& {{R}_{A}}+114\textrm{.}3=49+196 \\ | & {{R}_{A}}+114\textrm{.}3=49+196 \\ | ||
- | & {{R}_{A}}=49+196-114\textrm{.}3=130.7\text{ N} \\ | + | & {{R}_{A}}=49+196-114\textrm{.}3=130\textrm{.}7\text{ N} \\ |
\end{align}</math> | \end{align}</math> |
Current revision
The diagram shows the forces acting.
Taking moments about the left hand support:
\displaystyle \begin{align}
& {{R}_{B}}\times 3=49\times 1+196\times 1\textrm{.}5 \\
& {{R}_{B}}=\frac{49\times 1+196\times 1\textrm{.}5}{3}=114\textrm{.}3\text{ N} \\
\end{align}
Taking moments about the right hand support:
\displaystyle \begin{align}
& {{R}_{A}}\times 3=49\times 2+196\times 1\textrm{.}5 \\
& {{R}_{B}}=\frac{49\times 2+196\times 1\textrm{.}5}{3}=130\textrm{.}7\text{ N} \\
\end{align}
Or:
\displaystyle \begin{align} & {{R}_{A}}+114\textrm{.}3=49+196 \\ & {{R}_{A}}=49+196-114\textrm{.}3=130\textrm{.}7\text{ N} \\ \end{align}