Solution 14.1a

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: Taking moments about the point A: <math>\begin{align} & 1 \textrm{.}5\times {{R}_{B}}=0 \textrm{.}5\times 20\times 9 \textrm{.}8 \\ & {{R}_{B}}=\frac{ 0\textrm{.}5\times 20\times 9 \text...)
Current revision (09:29, 8 March 2011) (edit) (undo)
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
Taking moments about the point A:
+
The weight acts at the middle point of the beam that is distance 0.5 m from <math>A</math>.
 +
 
 +
Taking moments about the point <math>A</math>:
<math>\begin{align}
<math>\begin{align}
Line 6: Line 8:
\end{align}</math>
\end{align}</math>
-
Taking moments about the point A:
+
Taking moments about the point <math>B</math>:
<math>\begin{align}
<math>\begin{align}
Line 13: Line 15:
\end{align}</math>
\end{align}</math>
-
Or
+
Or use
-
<math>\begin{align}
+
<math>{{R}_{A}}+{{R}_{B}}=20\times 9\textrm{.}8\ \text{N}</math>
-
& {{R}_{A}}+65 \textrm{.}3=20\times \textrm{.}7\text{ N} \\
+
 
-
\end{align}</math>
+
and only one of the above moment equations.

Current revision

The weight acts at the middle point of the beam that is distance 0.5 m from \displaystyle A.

Taking moments about the point \displaystyle A:

\displaystyle \begin{align} & 1 \textrm{.}5\times {{R}_{B}}=0 \textrm{.}5\times 20\times 9 \textrm{.}8 \\ & {{R}_{B}}=\frac{ 0\textrm{.}5\times 20\times 9 \textrm{.}8}{1 \textrm{.}5}=65 \textrm{.}3\text{ N} \\ \end{align}

Taking moments about the point \displaystyle B:

\displaystyle \begin{align} & 1 \textrm{.}5\times {{R}_{A}}=1\times 20\times 9 \textrm{.}8 \\ & {{R}_{A}}=\frac{1\times 20\times 9 \textrm{.}8}{1 \textrm{.}5}=130 \textrm{.}7\text{ N} \\ \end{align}

Or use

\displaystyle {{R}_{A}}+{{R}_{B}}=20\times 9\textrm{.}8\ \text{N}

and only one of the above moment equations.