Solution 10.2

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: We first obtain the acceleration <math>a</math>. Using the kinematic equation (see section 6) <math>{{v}^{\ 2}}={{u}^{\ 2}}+2as</math> <math>\begin{align} & {{0}^{2}}={{50}^{2}}+2\tim...)
Current revision (14:45, 21 May 2010) (edit) (undo)
 
Line 4: Line 4:
<math>{{v}^{\ 2}}={{u}^{\ 2}}+2as</math>
<math>{{v}^{\ 2}}={{u}^{\ 2}}+2as</math>
 +
 +
gives
<math>\begin{align}
<math>\begin{align}
& {{0}^{2}}={{50}^{2}}+2\times a\times 300 \\
& {{0}^{2}}={{50}^{2}}+2\times a\times 300 \\
-
& \\
+
& a=-\frac{2500}{600}=-4\textrm{.}167\ \text{m}{{\text{s}}^{-2}} \\
-
& a=-\frac{2500}{600}=-4.167\ \text{m}{{\text{s}}^{-2}} \\
+
\end{align}</math>
\end{align}</math>
 +
 +
Then <math>F=ma\ </math> gives
 +
 +
<math>F=1000\times 4\textrm{.}167=4167\ \text{N}</math>

Current revision

We first obtain the acceleration \displaystyle a.

Using the kinematic equation (see section 6)

\displaystyle {{v}^{\ 2}}={{u}^{\ 2}}+2as

gives

\displaystyle \begin{align} & {{0}^{2}}={{50}^{2}}+2\times a\times 300 \\ & a=-\frac{2500}{600}=-4\textrm{.}167\ \text{m}{{\text{s}}^{-2}} \\ \end{align}

Then \displaystyle F=ma\ gives

\displaystyle F=1000\times 4\textrm{.}167=4167\ \text{N}