Solution 8.10a
From Mechanics
(2 intermediate revisions not shown.) | |||
Line 21: | Line 21: | ||
We can now substitute in the equation <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> giving, | We can now substitute in the equation <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> giving, | ||
+ | |||
+ | <math>\mathbf{r}=(8\ \mathbf{i}+8 \ \mathbf{ j})t+\frac{1}{2}(0\textrm{.}01\mathbf{i}+0\textrm{.}02\mathbf{j}+0\textrm{.}1\mathbf{k}){{t}^{\ 2}}+10\mathbf{k}</math>. | ||
+ | |||
+ | We are looking for the time when the height is <math>90\ \text{m}</math>, that is when the <math>\mathbf{k}</math> component is <math>80\ \text{m}</math>. This gives, | ||
+ | |||
+ | <math>\frac{1}{2} \times 0\textrm{.}1{{t}^{\ 2}}+10=90</math> | ||
+ | |||
+ | or | ||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{1}{20}{{t}^{\ 2}}=80 \\ | ||
+ | & \\ | ||
+ | & {{t}^{\ 2}}=1600 \\ | ||
+ | & \\ | ||
+ | & t=40\ \text{s} \\ | ||
+ | \end{align}</math> |
Current revision
We use, \displaystyle \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} to find an expression for the position of the aeroplane at a time t. Here,
\displaystyle {{\mathbf{r}}_{0}}=10\mathbf{k}\text{ m}
\displaystyle \mathbf{a}=(0\textrm{.}01\mathbf{i}+0\textrm{.}02\mathbf{j}+0\textrm{.}1\mathbf{k})\text{ m}{{\text{s}}^{\text{-2}}}
We need to calculate \displaystyle \mathbf{u}.
If a vector, like the starting velocity \displaystyle \mathbf{u} in this problem, points north east this means it has the same component in the east and north directions. In other words its \displaystyle \mathbf{i} component and its \displaystyle \mathbf{j} component are the same. Thus \displaystyle \mathbf{u} is of the form
\displaystyle \mathbf{u}=B\ \mathbf{i}+B \ \mathbf{ j}
This has magnitude \displaystyle \sqrt{{{B}^{2}}+{{B}^{2}}}=\sqrt{2}B \text{ m}{{\text{s}}^{\text{-1}}}
However the magnitude of the initial velocity is the initial speed which is
\displaystyle 8\sqrt{2}\text{ m}{{\text{s}}^{\text{-1}}}. Comparing these results shows \displaystyle B=8 and thus
\displaystyle \mathbf{u}=8\ \mathbf{i}+8 \ \mathbf{ j}\text{ m}{{\text{s}}^{\text{-1}}}
We can now substitute in the equation \displaystyle \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} giving,
\displaystyle \mathbf{r}=(8\ \mathbf{i}+8 \ \mathbf{ j})t+\frac{1}{2}(0\textrm{.}01\mathbf{i}+0\textrm{.}02\mathbf{j}+0\textrm{.}1\mathbf{k}){{t}^{\ 2}}+10\mathbf{k}.
We are looking for the time when the height is \displaystyle 90\ \text{m}, that is when the \displaystyle \mathbf{k} component is \displaystyle 80\ \text{m}. This gives,
\displaystyle \frac{1}{2} \times 0\textrm{.}1{{t}^{\ 2}}+10=90
or
\displaystyle \begin{align} & \frac{1}{20}{{t}^{\ 2}}=80 \\ & \\ & {{t}^{\ 2}}=1600 \\ & \\ & t=40\ \text{s} \\ \end{align}