Solution 8.6b
From Mechanics
(5 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | + | We assume the starting point is the origin. This means <math>{{\mathbf{r}}_{0}}=0</math> | |
- | <math> | + | The boat first accelerates to a point <math>A</math> say. We first must calculate the position of this point <math>{{\mathbf{r}}_{A}}</math>. |
- | + | Using <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> with, | |
- | + | <math>t=10</math>, <math>\mathbf{u}=\mathbf{i}+2\mathbf{j}</math> and from part a) | |
+ | <math>\mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j}\ \text{m}{{\text{s}}^{-2}}</math> | ||
- | <math>\mathbf{ | + | <math>{{\mathbf{r}}_{A}}=(\mathbf{i}+2\mathbf{j}) \times 10+\frac{1}{2}(0\textrm{.}5\mathbf{i}-\mathbf{j}) \times {{10}^{\ 2}}+0=35\mathbf{i}-30\mathbf{j}</math> |
- | + | The next stage has | |
- | + | <math>t=40</math>, <math>\mathbf{a}=0</math>, <math>{{\mathbf{r}}_{0}}=35\mathbf{i}-30\mathbf{j}</math>, and <math>\mathbf{u}=6\mathbf{i}-8\mathbf{j}</math> as the final position and velocity of the first stage is the initial position and velocity of the second stage. | |
- | + | Using once again <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> we get | |
- | <math> \mathbf{r}= | + | <math>\mathbf{r}=(6\mathbf{i}-8\mathbf{j}) \times 40+0+(35\mathbf{i}-30\mathbf{j})=275\mathbf{i}-350\mathbf{j}</math> |
- | + | This is the boat´s final position. | |
- | + | The distance from the starting point is the magnitude of this vector, | |
- | In the second part the boat travel with constant velocity <math>6\mathbf{i}-8\mathbf{j}</math> | ||
- | + | <math>\sqrt{{{275}^{2}}+{{\left( -355 \right)}^{2}}}=445\ \text{m}</math> | |
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
We assume the starting point is the origin. This means \displaystyle {{\mathbf{r}}_{0}}=0
The boat first accelerates to a point \displaystyle A say. We first must calculate the position of this point \displaystyle {{\mathbf{r}}_{A}}.
Using \displaystyle \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} with,
\displaystyle t=10, \displaystyle \mathbf{u}=\mathbf{i}+2\mathbf{j} and from part a) \displaystyle \mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j}\ \text{m}{{\text{s}}^{-2}}
\displaystyle {{\mathbf{r}}_{A}}=(\mathbf{i}+2\mathbf{j}) \times 10+\frac{1}{2}(0\textrm{.}5\mathbf{i}-\mathbf{j}) \times {{10}^{\ 2}}+0=35\mathbf{i}-30\mathbf{j}
The next stage has
\displaystyle t=40, \displaystyle \mathbf{a}=0, \displaystyle {{\mathbf{r}}_{0}}=35\mathbf{i}-30\mathbf{j}, and \displaystyle \mathbf{u}=6\mathbf{i}-8\mathbf{j} as the final position and velocity of the first stage is the initial position and velocity of the second stage.
Using once again \displaystyle \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} we get
\displaystyle \mathbf{r}=(6\mathbf{i}-8\mathbf{j}) \times 40+0+(35\mathbf{i}-30\mathbf{j})=275\mathbf{i}-350\mathbf{j}
This is the boat´s final position.
The distance from the starting point is the magnitude of this vector,
\displaystyle \sqrt{{{275}^{2}}+{{\left( -355 \right)}^{2}}}=445\ \text{m}