Solution 8.4c
From Mechanics
(New page: We have <math>\mathbf{a}=4\mathbf{i}– 8\mathbf{j},\ \</math> <math>\mathbf{u}=4\mathbf{i}– 8\mathbf{j}\ \</math> and <math>\ \ \mathbf{ r}_{0}=6\mathbf{i}+2\mathbf{j}</math>. The ...) |
|||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
- | We have <math>\mathbf{a}= | + | We have <math>\mathbf{a}=0\textrm{.}2\mathbf{i}+0\textrm{.}3\mathbf{j},\ \</math> <math>\mathbf{u}=4\mathbf{i}– 8\mathbf{j}\ \</math> and <math>\ \ \mathbf{ r}_{0}=6\mathbf{i}+2\mathbf{j}</math>. |
The most suitable equation to use is <math>\mathbf{v}=\mathbf{u}+\mathbf{a}t\ \</math>. | The most suitable equation to use is <math>\mathbf{v}=\mathbf{u}+\mathbf{a}t\ \</math>. | ||
- | Substituting the above values gives a vector | + | Substituting the above values gives a vector equation for <math>t</math>. |
- | <math>4\textrm{.}8\mathbf{i}-6\textrm{.}8\mathbf{j}=4\mathbf{i} | + | <math>4\textrm{.}8\mathbf{i}-6\textrm{.}8\mathbf{j}=4\mathbf{i}-8\mathbf{j}+(0\textrm{.}2\mathbf{i}+0\textrm{.}3\mathbf{j})t\ \</math> |
+ | |||
+ | 0r <math>4\textrm{.}8\mathbf{i}-6\textrm{.}8\mathbf{j}=(4+0\textrm{.}2t\ )\mathbf{i}+ (0\textrm{.}3t-8\ )\mathbf{j}\ \</math> | ||
+ | |||
+ | Is there a <math>t</math> which satisfies both the <math>\mathbf{i}</math> terms and the <math>\mathbf{j}</math> terms? | ||
+ | |||
+ | <math>4\textrm{.}8\mathbf{i}=(4+0\textrm{.}2t\ )\mathbf{i}\ \</math> | ||
+ | |||
+ | and | ||
+ | |||
+ | <math>-6\textrm{.}8\mathbf{j}=(0\textrm{.}3t-8\ )\mathbf{j}\ \</math> | ||
+ | |||
+ | It is easily seen that <math>t=4 \ \text{s}</math> satisfies both these equations. |
Current revision
We have \displaystyle \mathbf{a}=0\textrm{.}2\mathbf{i}+0\textrm{.}3\mathbf{j},\ \ \displaystyle \mathbf{u}=4\mathbf{i}– 8\mathbf{j}\ \ and \displaystyle \ \ \mathbf{ r}_{0}=6\mathbf{i}+2\mathbf{j}.
The most suitable equation to use is \displaystyle \mathbf{v}=\mathbf{u}+\mathbf{a}t\ \.
Substituting the above values gives a vector equation for \displaystyle t.
\displaystyle 4\textrm{.}8\mathbf{i}-6\textrm{.}8\mathbf{j}=4\mathbf{i}-8\mathbf{j}+(0\textrm{.}2\mathbf{i}+0\textrm{.}3\mathbf{j})t\ \
0r \displaystyle 4\textrm{.}8\mathbf{i}-6\textrm{.}8\mathbf{j}=(4+0\textrm{.}2t\ )\mathbf{i}+ (0\textrm{.}3t-8\ )\mathbf{j}\ \
Is there a \displaystyle t which satisfies both the \displaystyle \mathbf{i} terms and the \displaystyle \mathbf{j} terms?
\displaystyle 4\textrm{.}8\mathbf{i}=(4+0\textrm{.}2t\ )\mathbf{i}\ \
and
\displaystyle -6\textrm{.}8\mathbf{j}=(0\textrm{.}3t-8\ )\mathbf{j}\ \
It is easily seen that \displaystyle t=4 \ \text{s} satisfies both these equations.