Solution 8.4a

From Mechanics

(Difference between revisions)
Jump to: navigation, search
Current revision (12:17, 27 March 2011) (edit) (undo)
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
Here we have <math>\mathbf{a}=0.2\mathbf{i}+0.3\mathbf{j},\ \</math> <math>\mathbf{u}=4\mathbf{i}– 8\mathbf{j}\ \</math> and <math>\ \ \mathbf{ r}_{0}=6\mathbf{i}+2\mathbf{j}</math>.
+
Here we have <math>\mathbf{a}=0\textrm{.}2\mathbf{i}+0\textrm{.}3\mathbf{j},\ \</math> <math>\mathbf{u}=4\mathbf{i}– 8\mathbf{j}\ \</math> and <math>\ \ \mathbf{ r}_{0}=6\mathbf{i}+2\mathbf{j}</math>.
Using <math>\mathbf{v}=\mathbf{u}+\mathbf{a}t\ \</math> at <math>\ \ t=10</math> gives
Using <math>\mathbf{v}=\mathbf{u}+\mathbf{a}t\ \</math> at <math>\ \ t=10</math> gives
-
<math>\mathbf{v}=4\mathbf{i}– 8\mathbf{j}+(0.2\mathbf{i}+0.3\mathbf{j})\times 10\ \</math> or
+
<math>\mathbf{v}=4\mathbf{i}– 8\mathbf{j}+(0\textrm{.}2\mathbf{i}+0\textrm{.}3\mathbf{j})\times 10\ \</math> or
-
<math>\mathbf{v}=6\mathbf{i}– 5\mathbf{j}</math>
+
<math>\mathbf{v}=6\mathbf{i}– 5\mathbf{j}\ \ \text{m}{{\text{s}}^{-1}}</math>
 +
The speed is the magnitude of this velocity vector.
-
 
+
<math>v=\sqrt{{{6}^{2}}+{{\left( -5 \right)}^{2}}}=\sqrt{61}=7\textrm{.}81\ \text{m}{{\text{s}}^{-1}}</math>
-
 
+
-
 
+
-
Using <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math>
+

Current revision

Here we have \displaystyle \mathbf{a}=0\textrm{.}2\mathbf{i}+0\textrm{.}3\mathbf{j},\ \ \displaystyle \mathbf{u}=4\mathbf{i}– 8\mathbf{j}\ \ and \displaystyle \ \ \mathbf{ r}_{0}=6\mathbf{i}+2\mathbf{j}.

Using \displaystyle \mathbf{v}=\mathbf{u}+\mathbf{a}t\ \ at \displaystyle \ \ t=10 gives

\displaystyle \mathbf{v}=4\mathbf{i}– 8\mathbf{j}+(0\textrm{.}2\mathbf{i}+0\textrm{.}3\mathbf{j})\times 10\ \ or

\displaystyle \mathbf{v}=6\mathbf{i}– 5\mathbf{j}\ \ \text{m}{{\text{s}}^{-1}}

The speed is the magnitude of this velocity vector.

\displaystyle v=\sqrt{{{6}^{2}}+{{\left( -5 \right)}^{2}}}=\sqrt{61}=7\textrm{.}81\ \text{m}{{\text{s}}^{-1}}