Solution 8.1b
From Mechanics
(Difference between revisions)
(One intermediate revision not shown.) | |||
Line 8: | Line 8: | ||
Substituting these into the equation | Substituting these into the equation | ||
<math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> | <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> | ||
- | gives the position vector of the | + | gives the position vector of the jet-ski at time <math>t=10 \text{ s }</math> as: |
<math>\begin{align} | <math>\begin{align} |
Current revision
In this case we have \displaystyle \mathbf{u}=4\mathbf{i} , \displaystyle \mathbf{a}=0\textrm{.}9\mathbf{i}+0\textrm{.}7\mathbf{j} and \displaystyle {{\mathbf{r}}_{0}}=400\mathbf{i}+350\mathbf{j}.
Substituting these into the equation \displaystyle \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} gives the position vector of the jet-ski at time \displaystyle t=10 \text{ s } as:
\displaystyle \begin{align} & \mathbf{r}=(4\mathbf{i})\times 10+\frac{1}{2}(0\textrm{.}9\mathbf{i}+0\textrm{.}7\mathbf{j})\times {{10}^{\ 2}}+400\mathbf{i}+350\mathbf{j} \\ & =40\mathbf{i}+45\mathbf{i}+35\mathbf{j}+400\mathbf{i}+350\mathbf{j} \\ \\ & =485\mathbf{i}+385\mathbf{j} \ \text{m} \end{align}