Solution 8.1a

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: In this case we have <math>\mathbf{u}=4\mathbf{i}</math> , <math>\mathbf{a}=0.9\mathbf{i}+0.7\mathbf{j}</math> and <math>{{\mathbf{r}}_{0}}=400\mathbf{i}+350\mathbf{j}</math>. Substit...)
Current revision (12:16, 27 March 2011) (edit) (undo)
 
(6 intermediate revisions not shown.)
Line 1: Line 1:
In this case we have
In this case we have
<math>\mathbf{u}=4\mathbf{i}</math>
<math>\mathbf{u}=4\mathbf{i}</math>
-
,
+
and
-
<math>\mathbf{a}=0.9\mathbf{i}+0.7\mathbf{j}</math>
+
<math>\mathbf{a}=0\textrm{.}9\mathbf{i}+0\textrm{.}7\mathbf{j}</math>
-
and
+
-
<math>{{\mathbf{r}}_{0}}=400\mathbf{i}+350\mathbf{j}</math>.
+
-
Substituting these into the equation
+
Substituting these into the equation
-
<math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math>
+
<math>\mathbf{v}=\mathbf{u}+\mathbf{a}t \ \</math>
-
gives the position vector of the ball at time <math>10</math> as:
+
gives the velocity of the jet-ski at time <math>t=10 \text{ s }</math> as:
-
+
 
-
<math>\begin{align}
+
<math>\mathbf{v}=4\mathbf{i}+(0\textrm{.}9\mathbf{i}+0\textrm{.}7\mathbf{j})\times 10</math>
-
& \mathbf{r}=(4\mathbf{i})t+\frac{1}{2}(0.9\mathbf{i}+0.7\mathbf{j}){{t}^{\ 2}}+1\textrm{.}5\mathbf{j} \\
+
 
-
& =8t\mathbf{i}+2t\mathbf{j}-5{{t}^{\ 2}}\mathbf{j}+1\textrm{.}5\mathbf{j} \\
+
which gives
-
& =(8t)\mathbf{i}+(1\textrm{.}5+2t-5{{t}^{\ 2}})\mathbf{j} \ \text{m}
+
 
-
\end{align}</math>
+
<math>\mathbf{v}=13\mathbf{i}+7\mathbf{j} \ \text{ m}{{\text{s}}^{\text{-1}}}</math>

Current revision

In this case we have \displaystyle \mathbf{u}=4\mathbf{i} and \displaystyle \mathbf{a}=0\textrm{.}9\mathbf{i}+0\textrm{.}7\mathbf{j}

Substituting these into the equation \displaystyle \mathbf{v}=\mathbf{u}+\mathbf{a}t \ \ gives the velocity of the jet-ski at time \displaystyle t=10 \text{ s } as:

\displaystyle \mathbf{v}=4\mathbf{i}+(0\textrm{.}9\mathbf{i}+0\textrm{.}7\mathbf{j})\times 10

which gives

\displaystyle \mathbf{v}=13\mathbf{i}+7\mathbf{j} \ \text{ m}{{\text{s}}^{\text{-1}}}