Solution 5.3b
From Mechanics
(Difference between revisions)
(New page: From the previous part we have that <math>\mathbf{F}4=-\mathbf{F}1-\mathbf{F}2-\mathbf{F}3=-292\mathbf{i}-62\mathbf{j}\ \text{N}</math> Thus the magnitude <math>Q</math> is given by <ma...) |
|||
Line 6: | Line 6: | ||
<math>Q{}^{2}={{\left( -292 \right)}^{2}}+{{\left( -62 \right)}^{2}}=85300+3840=89140</math> | <math>Q{}^{2}={{\left( -292 \right)}^{2}}+{{\left( -62 \right)}^{2}}=85300+3840=89140</math> | ||
- | |||
or | or | ||
<math>Q=299 \text{ N}</math> | <math>Q=299 \text{ N}</math> | ||
+ | |||
+ | and | ||
+ | |||
+ | <math>\tan \alpha =\frac{62\textrm{.}9}{292}=0\textrm{.}215</math> | ||
+ | |||
+ | giving | ||
+ | |||
+ | <math>\alpha ={{12\textrm{.}2}^{\circ }}</math> |
Current revision
From the previous part we have that
\displaystyle \mathbf{F}4=-\mathbf{F}1-\mathbf{F}2-\mathbf{F}3=-292\mathbf{i}-62\mathbf{j}\ \text{N}
Thus the magnitude \displaystyle Q is given by
\displaystyle Q{}^{2}={{\left( -292 \right)}^{2}}+{{\left( -62 \right)}^{2}}=85300+3840=89140
or
\displaystyle Q=299 \text{ N}
and
\displaystyle \tan \alpha =\frac{62\textrm{.}9}{292}=0\textrm{.}215
giving
\displaystyle \alpha ={{12\textrm{.}2}^{\circ }}