Solution 4.9a
From Mechanics
(3 intermediate revisions not shown.) | |||
Line 25: | Line 25: | ||
& \mathbf{F}2=9\cos 90 {}^\circ | & \mathbf{F}2=9\cos 90 {}^\circ | ||
\mathbf{i}+9\sin 90 {}^\circ | \mathbf{i}+9\sin 90 {}^\circ | ||
- | \mathbf{j}=9\times | + | \mathbf{j}=9\times 0\mathbf{i}+9\times 1\textrm{.}0\mathbf{j} \\ |
- | & = | + | & =9\textrm{.}0\mathbf{j} \ \text{N}\\ |
\end{align}</math> | \end{align}</math> | ||
Line 38: | Line 38: | ||
& \mathbf{F}3=6\cos \left(-108{}^\circ \right) | & \mathbf{F}3=6\cos \left(-108{}^\circ \right) | ||
\mathbf{i}+6\sin \left(-108{}^\circ \right) | \mathbf{i}+6\sin \left(-108{}^\circ \right) | ||
- | \mathbf{j}=6\times 0\mathbf{i}+6\times \left(- | + | \mathbf{j}=6\times \left(-0\textrm{.}309\right)\mathbf{i}+6\times \left(-0\textrm{.}951\right)\mathbf{j} \\ |
- | & =- | + | & =-1\textrm{.}85\mathbf{i}-5\textrm{.}71\mathbf{j} \ \text{N}\\ |
\end{align}</math> | \end{align}</math> | ||
Line 50: | Line 50: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & \mathbf{F} | + | & \mathbf{F}4=8\cos \left(-25{}^\circ \right) |
\mathbf{i}+8\sin \left(-25{}^\circ \right) | \mathbf{i}+8\sin \left(-25{}^\circ \right) | ||
- | \mathbf{j}=8\times 0\mathbf{i}+8\times \left(- | + | \mathbf{j}=8\times 0\textrm{.}906\mathbf{i}+8\times \left(-0\textrm{.}423\right)\mathbf{j} \\ |
- | & =- | + | & =7\textrm{.}25\mathbf{i}-3\textrm{.}38\mathbf{j} \ \text{N}\\ |
+ | \end{align}</math> | ||
+ | |||
+ | The resultant <math>\mathbf{R}</math> is the sum of these four forces. | ||
+ | |||
+ | <math>\begin{align} | ||
+ | & \mathbf{R} =11\textrm{.}1\mathbf{i}+3\textrm{.}93\mathbf{j} \ \text{N}\\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | Then if <math>R</math> is the magnitude of this resultant | ||
+ | |||
+ | <math>\begin{align} | ||
+ | & {{R\ }^{2}}={{11\textrm{.}1}^{2}}+{{3\textrm{.}93}^{2}} \\ | ||
+ | & R=\sqrt{{{11\textrm{.}1}^{2}}+{{3\textrm{.}93}^{2}}}=11\textrm{.}8\ \text{N} \\ | ||
\end{align}</math> | \end{align}</math> |
Current revision
\displaystyle \begin{align} & \mathbf{F}=F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j} \end{align}
\displaystyle F1=7\ \text{N} and \displaystyle \alpha 1=35{}^\circ this gives
\displaystyle \begin{align} & \mathbf{F}1=7\cos 35{}^\circ \mathbf{i}+7\sin 35{}^\circ \mathbf{j}=7\times 0\textrm{.}819\mathbf{i}+7\times 0\textrm{.}574\mathbf{j} \\ & =5\textrm{.}73\mathbf{i}+4\textrm{.}02\mathbf{j}\ \text{N}\\ \end{align}
\displaystyle F2=90 \text{N} and \displaystyle \alpha 2=90{}^\circ this gives
\displaystyle \begin{align} & \mathbf{F}2=9\cos 90 {}^\circ \mathbf{i}+9\sin 90 {}^\circ \mathbf{j}=9\times 0\mathbf{i}+9\times 1\textrm{.}0\mathbf{j} \\ & =9\textrm{.}0\mathbf{j} \ \text{N}\\ \end{align}
\displaystyle F3=6\ \text{N} and \displaystyle \alpha 3=-180{}^\circ+72{}^\circ=-108{}^\circ this gives
\displaystyle \begin{align} & \mathbf{F}3=6\cos \left(-108{}^\circ \right) \mathbf{i}+6\sin \left(-108{}^\circ \right) \mathbf{j}=6\times \left(-0\textrm{.}309\right)\mathbf{i}+6\times \left(-0\textrm{.}951\right)\mathbf{j} \\ & =-1\textrm{.}85\mathbf{i}-5\textrm{.}71\mathbf{j} \ \text{N}\\ \end{align}
\displaystyle F4=8\ \text{N}
and
\displaystyle \alpha 3=-25{}^\circ
this gives
\displaystyle \begin{align} & \mathbf{F}4=8\cos \left(-25{}^\circ \right) \mathbf{i}+8\sin \left(-25{}^\circ \right) \mathbf{j}=8\times 0\textrm{.}906\mathbf{i}+8\times \left(-0\textrm{.}423\right)\mathbf{j} \\ & =7\textrm{.}25\mathbf{i}-3\textrm{.}38\mathbf{j} \ \text{N}\\ \end{align}
The resultant \displaystyle \mathbf{R} is the sum of these four forces.
\displaystyle \begin{align} & \mathbf{R} =11\textrm{.}1\mathbf{i}+3\textrm{.}93\mathbf{j} \ \text{N}\\ \end{align}
Then if \displaystyle R is the magnitude of this resultant
\displaystyle \begin{align} & {{R\ }^{2}}={{11\textrm{.}1}^{2}}+{{3\textrm{.}93}^{2}} \\ & R=\sqrt{{{11\textrm{.}1}^{2}}+{{3\textrm{.}93}^{2}}}=11\textrm{.}8\ \text{N} \\ \end{align}