Solution 4.9a
From Mechanics
(New page: <math>\begin{align} & \mathbf{F}=F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j} \end{align}</math> <math>F1=100\ \text{N}</math> and <math>\alpha 1=30{}^\circ </math> this gives <ma...) |
|||
Line 3: | Line 3: | ||
\end{align}</math> | \end{align}</math> | ||
- | <math>F1= | + | <math>F1=7\ \text{N}</math> |
and | and | ||
- | <math>\alpha 1= | + | <math>\alpha 1=35{}^\circ |
</math> | </math> | ||
this gives | this gives | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & \mathbf{F}1= | + | & \mathbf{F}1=7\cos 35{}^\circ |
- | \mathbf{i}+ | + | \mathbf{i}+7\sin 35{}^\circ |
- | \mathbf{j}= | + | \mathbf{j}=7\times 0\textrm{.}866\mathbf{i}+7\times 0\textrm{.}5\mathbf{j} \\ |
& =86\textrm{.}6\mathbf{i}+50\mathbf{j}\ \text{N}\\ | & =86\textrm{.}6\mathbf{i}+50\mathbf{j}\ \text{N}\\ | ||
\end{align}</math> | \end{align}</math> | ||
- | <math>F2=90 | + | <math>F2=90 \text{N}</math> |
and | and | ||
- | <math>\alpha 2= | + | <math>\alpha 2=90{}^\circ |
</math> | </math> | ||
this gives | this gives | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & \mathbf{F}2= | + | & \mathbf{F}2=9\cos 90 {}^\circ |
- | \mathbf{i}+ | + | \mathbf{i}+9\sin 90 {}^\circ |
- | \mathbf{j}= | + | \mathbf{j}=9\times \left(-0\textrm{.}342 \right)\mathbf{i}+9\times 0\textrm{.}94\mathbf{j} \\ |
& =-30\textrm{.}8\mathbf{i}+84\textrm{.}6\mathbf{j} \ \text{N}\\ | & =-30\textrm{.}8\mathbf{i}+84\textrm{.}6\mathbf{j} \ \text{N}\\ | ||
\end{align}</math> | \end{align}</math> | ||
- | <math>F3= | + | <math>F3=6\ \text{N}</math> |
and | and | ||
- | <math>\alpha 3=- | + | <math>\alpha 3=-180{}^\circ+72{}^\circ=-108{}^\circ |
</math> | </math> | ||
this gives | this gives | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & \mathbf{F}3= | + | & \mathbf{F}3=6\cos \left(-108{}^\circ \right) |
- | \mathbf{i}+ | + | \mathbf{i}+6\sin \left(-108{}^\circ \right) |
- | \mathbf{j}= | + | \mathbf{j}=6\times 0\mathbf{i}+6\times \left(-1\right)\mathbf{j} \\ |
& =-80\mathbf{j}\ \text{N}\\ | & =-80\mathbf{j}\ \text{N}\\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | <math>F4=8\ \text{N}</math> | ||
+ | and | ||
+ | <math>\alpha 3=-25{}^\circ | ||
+ | </math> | ||
+ | this gives | ||
+ | |||
+ | <math>\begin{align} | ||
+ | & \mathbf{F}3=8\cos \left(-25{}^\circ \right) | ||
+ | \mathbf{i}+8\sin \left(-25{}^\circ \right) | ||
+ | \mathbf{j}=8\times 0\mathbf{i}+8\times \left(-1\right)\mathbf{j} \\ | ||
+ | & =-30\textrm{.}8\mathbf{i}+84\textrm{.}6\mathbf{j} \ \text{N}\\ | ||
\end{align}</math> | \end{align}</math> |
Revision as of 11:51, 31 March 2010
\displaystyle \begin{align} & \mathbf{F}=F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j} \end{align}
\displaystyle F1=7\ \text{N} and \displaystyle \alpha 1=35{}^\circ this gives
\displaystyle \begin{align} & \mathbf{F}1=7\cos 35{}^\circ \mathbf{i}+7\sin 35{}^\circ \mathbf{j}=7\times 0\textrm{.}866\mathbf{i}+7\times 0\textrm{.}5\mathbf{j} \\ & =86\textrm{.}6\mathbf{i}+50\mathbf{j}\ \text{N}\\ \end{align}
\displaystyle F2=90 \text{N} and \displaystyle \alpha 2=90{}^\circ this gives
\displaystyle \begin{align} & \mathbf{F}2=9\cos 90 {}^\circ \mathbf{i}+9\sin 90 {}^\circ \mathbf{j}=9\times \left(-0\textrm{.}342 \right)\mathbf{i}+9\times 0\textrm{.}94\mathbf{j} \\ & =-30\textrm{.}8\mathbf{i}+84\textrm{.}6\mathbf{j} \ \text{N}\\ \end{align}
\displaystyle F3=6\ \text{N} and \displaystyle \alpha 3=-180{}^\circ+72{}^\circ=-108{}^\circ this gives
\displaystyle \begin{align} & \mathbf{F}3=6\cos \left(-108{}^\circ \right) \mathbf{i}+6\sin \left(-108{}^\circ \right) \mathbf{j}=6\times 0\mathbf{i}+6\times \left(-1\right)\mathbf{j} \\ & =-80\mathbf{j}\ \text{N}\\ \end{align}
\displaystyle F4=8\ \text{N}
and
\displaystyle \alpha 3=-25{}^\circ
this gives
\displaystyle \begin{align} & \mathbf{F}3=8\cos \left(-25{}^\circ \right) \mathbf{i}+8\sin \left(-25{}^\circ \right) \mathbf{j}=8\times 0\mathbf{i}+8\times \left(-1\right)\mathbf{j} \\ & =-30\textrm{.}8\mathbf{i}+84\textrm{.}6\mathbf{j} \ \text{N}\\ \end{align}