Solution 4.7b

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: <math>\begin{align} & \mathbf{F}1= & =86\textrm{.}6\mathbf{i}+50\mathbf{j}\ \text{N}\\ \end{align}</math> <math>\begin{align} & \mathbf{F}2= & =-30\textrm{.}8\mathbf{i}+84\textrm{.}6\mat...)
Line 1: Line 1:
<math>\begin{align}
<math>\begin{align}
-
& \mathbf{F}1=
+
& \mathbf{F}1 =
-
& =86\textrm{.}6\mathbf{i}+50\mathbf{j}\ \text{N}\\
+
& 86\textrm{.}6\mathbf{i}+50\mathbf{j}\ \text{N}\\
\end{align}</math>
\end{align}</math>
<math>\begin{align}
<math>\begin{align}
& \mathbf{F}2=
& \mathbf{F}2=
-
& =-30\textrm{.}8\mathbf{i}+84\textrm{.}6\mathbf{j} \ \text{N}\\
+
& -30\textrm{.}8\mathbf{i}+84\textrm{.}6\mathbf{j} \ \text{N}\\
\end{align}</math>
\end{align}</math>
<math>\begin{align}
<math>\begin{align}
& \mathbf{F}3=
& \mathbf{F}3=
-
& =-80\mathbf{j}\ \text{N}\\
+
& -80\mathbf{j}\ \text{N}\\
 +
\end{align}</math>
 +
 
 +
Summing these vectors give their resultant
 +
 
 +
<math>\begin{align}
 +
& \mathbf{FR}=
 +
& -24\textrm{.}2\mathbf{i}+134\textrm{.}6\mathbf{j} \ \text{N}\\
\end{align}</math>
\end{align}</math>

Revision as of 15:26, 24 March 2010

\displaystyle \begin{align} & \mathbf{F}1 = & 86\textrm{.}6\mathbf{i}+50\mathbf{j}\ \text{N}\\ \end{align}

\displaystyle \begin{align} & \mathbf{F}2= & -30\textrm{.}8\mathbf{i}+84\textrm{.}6\mathbf{j} \ \text{N}\\ \end{align}

\displaystyle \begin{align} & \mathbf{F}3= & -80\mathbf{j}\ \text{N}\\ \end{align}

Summing these vectors give their resultant

\displaystyle \begin{align} & \mathbf{FR}= & -24\textrm{.}2\mathbf{i}+134\textrm{.}6\mathbf{j} \ \text{N}\\ \end{align}