19. Variable acceleration II

From Mechanics

(Difference between revisions)
Jump to: navigation, search
Current revision (13:15, 20 February 2010) (edit) (undo)
 
(6 intermediate revisions not shown.)
Line 7: Line 7:
|}
|}
-
Key Points
+
== '''Key Points''' ==
-
+
{| width="100%" cellspacing="10px" align="center"
-
<math>\begin{align}
+
 
 +
|align="left"| <math>\begin{align}
& v=\int{a}dt \\
& v=\int{a}dt \\
& s=\int{v}dt \\
& s=\int{v}dt \\
\end{align}</math>
\end{align}</math>
-
+
| valign="top"|<math>\begin{align}
-
<math>\begin{align}
+
& \mathbf{v}=\int{\mathbf{a}}dt \\
& \mathbf{v}=\int{\mathbf{a}}dt \\
& \mathbf{r}=\int{\mathbf{v}}dt \\
& \mathbf{r}=\int{\mathbf{v}}dt \\
\end{align}</math>
\end{align}</math>
 +
 +
|}
 +
Don't forget to evaluate constants of integration.
Don't forget to evaluate constants of integration.
-
 
+
'''[[Example 19.1]]'''
-
Example 19.1
+
The acceleration,
The acceleration,
<math>a</math>
<math>a</math>
-
<math>\text{m}{{\text{s}}^{-1}}</math>, of a particle, at time
+
, of a particle, at time
<math>t</math>
<math>t</math>
-
t seconds is given by:
+
seconds is given by:
<math>a=4-\frac{t}{20}</math>
<math>a=4-\frac{t}{20}</math>
Line 41: Line 43:
.
.
-
Solution
+
'''Solution'''
First integrate the acceleration to obtain the velocity.
First integrate the acceleration to obtain the velocity.
-
 
+
-
+
<math>v=\int{\left( 4-\frac{t}{20} \right)}dt=4t-\frac{{{t}^{\ 2}}}{40}+{{c}_{1}}</math>
-
<math>v=\int{\left( 4-\frac{t}{20} \right)}dt=4t-\frac{{{t}^{2}}}{40}+{{c}_{1}}</math>
+
-
 
+
To find the value of the constant
To find the value of the constant
Line 59: Line 59:
Hence the velocity is:
Hence the velocity is:
-
+
<math>v=4t-\frac{{{t}^{\ 2}}}{40} \text{ m}{{\text{s}}^{\text{-1}}}</math>
-
<math>v=4t-\frac{{{t}^{2}}}{40}</math>
+
-
 
+
-
 
+
The displacement of the particle can be found by integrating the velocity:
The displacement of the particle can be found by integrating the velocity:
-
 
+
-
+
<math>s=\int{\left( 4t-\frac{{{t}^{\ 2}}}{40} \right)}dt=2{{t}^{\ 2}}-\frac{{{t}^{\ 3}}}{120}+{{c}_{2}}</math>
-
<math>s=\int{\left( 4t-\frac{{{t}^{2}}}{40} \right)}dt=2{{t}^{2}}-\frac{{{t}^{3}}}{120}+{{c}_{2}}</math>
+
-
 
+
To find the constant
To find the constant
Line 81: Line 76:
<math>t</math>
<math>t</math>
is given by:
is given by:
-
 
+
-
+
<math>s=2{{t}^{\ 2}}-\frac{{{t}^{\ 3}}}{120}\text{ m}</math>
-
<math>s=2{{t}^{2}}-\frac{{{t}^{3}}}{120}</math>
+
-
 
+
To find the distance travelled substitute
To find the distance travelled substitute
Line 92: Line 85:
-
Example 19.2
+
'''[[Example 19.2]]'''
-
A boat has an initial velocity of 0.5j ms-1 and experiences an acceleration of
+
A boat has an initial velocity of <math>0\textrm{.}5\mathbf{j} \text{ m}{{\text{s}}^{-1}}</math> and experiences an acceleration of
<math>\left( \frac{3}{10}\mathbf{i}+\left( \frac{t}{50} \right)\mathbf{j} \right)</math>
<math>\left( \frac{3}{10}\mathbf{i}+\left( \frac{t}{50} \right)\mathbf{j} \right)</math>
<math>\text{m}{{\text{s}}^{-2}}</math>, at time
<math>\text{m}{{\text{s}}^{-2}}</math>, at time
Line 101: Line 94:
a) Find the velocity of the boat at time
a) Find the velocity of the boat at time
-
<math>t</math>
+
<math>t</math>.
-
.
+
b) Find the distance of the boat from the origin when
b) Find the distance of the boat from the origin when
-
<math>t=\text{ 12}0</math>
+
<math>t=\text{ 12}0</math>.
-
.
+
-
Solution
+
'''Solution'''
a) Integrate the acceleration to obtain the velocity:
a) Integrate the acceleration to obtain the velocity:
- 
<math>\begin{align}
<math>\begin{align}
-
& \mathbf{v}=\int{\frac{3}{10}dt\mathbf{i}+\int{\left( \frac{t}{50} \right)dt\mathbf{j}}} \\
+
& \mathbf{v}=\int{\frac{3}{10}dt\ \mathbf{i}+\int{\left( \frac{t}{50} \right)dt\ \mathbf{j}}} \\
-
& =\left( \frac{3}{10}t+{{c}_{1}} \right)\mathbf{i}+\left( \frac{{{t}^{2}}}{100}+{{c}_{2}} \right)\mathbf{j}
+
& =\left( \frac{3}{10}t+{{c}_{1}} \right)\mathbf{i}+\left( \frac{{{t}^{\ 2}}}{100}+{{c}_{2}} \right)\mathbf{j}
\end{align}</math>
\end{align}</math>
- 
When
When
<math>t=0</math>,
<math>t=0</math>,
-
<math>\mathbf{v}=0.5\mathbf{j}</math>.
+
<math>\mathbf{v}=0\textrm{.}5\mathbf{j}</math>.
These values can be substituted to give
These values can be substituted to give
<math>{{c}_{1}}=0</math>
<math>{{c}_{1}}=0</math>
and
and
-
<math>{{c}_{2}}=0.5</math>,
+
<math>{{c}_{2}}=0\textrm{.}5</math>,
so that the velocity is given by:
so that the velocity is given by:
- 
-
<math>\mathbf{v}=\left( \frac{3}{10}t \right)\mathbf{i}+\left( \frac{{{t}^{2}}}{100}+0.5 \right)\mathbf{j}</math>
+
<math>\mathbf{v}=\left( \frac{3}{10}t \right)\mathbf{i}+\left( \frac{{{t}^{\ 2}}}{100}+0\textrm{.}5 \right)\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}}</math>
-
 
+
b) Integrating the velocity gives the position vector:
b) Integrating the velocity gives the position vector:
- 
<math>\begin{align}
<math>\begin{align}
-
& \mathbf{r}=\int{\left( \frac{3}{10}t \right)dt}\mathbf{i}+\int{\left( \frac{{{t}^{2}}}{100}+0.5 \right)}dt\mathbf{j} \\
+
& \mathbf{r}=\int{\left( \frac{3}{10}t \right)dt}\ \mathbf{i}+\int{\left( \frac{{{t}^{\ 2}}}{100}+0\textrm{.}5 \right)}dt\ \mathbf{j} \\
-
& =\left( \frac{3{{t}^{2}}}{20}+{{c}_{3}} \right)\mathbf{i}+\left( \frac{{{t}^{3}}}{300}+0.5t+{{c}_{4}} \right)\mathbf{j}
+
& =\left( \frac{3{{t}^{\ 2}}}{20}+{{c}_{3}} \right)\mathbf{i}+\left( \frac{{{t}^{\ 3}}}{300}+0\textrm{.}5t+{{c}_{4}} \right)\mathbf{j}
\end{align}</math>
\end{align}</math>
- 
The boat is initially at the origin, so when
The boat is initially at the origin, so when
Line 151: Line 136:
<math>{{c}_{4}}=0</math>.
<math>{{c}_{4}}=0</math>.
Hence the position vector is:
Hence the position vector is:
- 
-
<math>\mathbf{r}=\left( \frac{3{{t}^{2}}}{20} \right)\mathbf{i}+\left( \frac{{{t}^{3}}}{300}+0.5t \right)\mathbf{j}</math>
+
<math>\mathbf{r}=\left( \frac{3{{t}^{\ 2}}}{20} \right)\mathbf{i}+\left( \frac{{{t}^{\ 3}}}{300}+0\textrm{.}5t \right)\mathbf{j}</math>
-
 
+
Substituting
Substituting
<math>t=\text{12}0</math>
<math>t=\text{12}0</math>
, gives the required position vector.
, gives the required position vector.
- 
-
<math>\mathbf{r}=\left( \frac{3\times {{120}^{2}}}{20} \right)\mathbf{i}+\left( \frac{{{120}^{3}}}{300}+0.5\times 120 \right)\mathbf{j}=2160\mathbf{i}+5820\mathbf{j}</math>
+
<math>\mathbf{r}=\left( \frac{3\times {{120}^{\ 2}}}{20} \right)\mathbf{i}+\left( \frac{{{120}^{3}}}{300}+0\textrm{.}5\times 120 \right)\mathbf{j}=2160\mathbf{i}+5820\mathbf{j}</math>
The distance from the origin can now be calculated, by finding the magnitude of the position vector.
The distance from the origin can now be calculated, by finding the magnitude of the position vector.
- 
<math>s=\sqrt{{{2160}^{2}}+{{5820}^{2}}}=6210\text{ m (to 3sf)}</math>
<math>s=\sqrt{{{2160}^{2}}+{{5820}^{2}}}=6210\text{ m (to 3sf)}</math>
-
Example 19.3
+
'''[[Example 19.3]]'''
At time
At time
<math>t</math>
<math>t</math>
seconds the resultant force on a particle, of mass 250 kg is
seconds the resultant force on a particle, of mass 250 kg is
-
<math>\left( 300t\mathbf{i}-400t\mathbf{j} \right)</math>
+
<math>\left( 300t\ \mathbf{i}-400t\ \mathbf{j} \right)</math>N. Initially the particle is at the origin and is moving with velocity (2<math>\mathbf{i}</math> - 3<math>\mathbf{j}</math>) <math>\text{m}{{\text{s}}^{-1}}</math>.
-
N. Initially the particle is at the origin and is moving with velocity (2<math>\mathbf{i}</math> - 3<math>\mathbf{j}</math>) ms-1.
+
a) Find the acceleration at time
a) Find the acceleration at time
-
<math>t</math>
+
<math>t</math>.
-
.
+
b) Find the velocity of the particle at time
b) Find the velocity of the particle at time
-
<math>t</math>
+
<math>t</math>.
-
.
+
c) Find the position vector of the particle at time
c) Find the position vector of the particle at time
<math>t</math>.
<math>t</math>.
-
Solution
+
'''Solution'''
a) Using Newton’s second Law,
a) Using Newton’s second Law,
<math>\mathbf{F}=m\mathbf{a}</math>,
<math>\mathbf{F}=m\mathbf{a}</math>,
gives:
gives:
- 
<math>\begin{align}
<math>\begin{align}
-
& 300t\mathbf{i}-400t\mathbf{j}=250\mathbf{a} \\
+
& 300t\ \mathbf{i}-400t\ \mathbf{j}=250\mathbf{a} \\
-
& \mathbf{a}=\frac{6}{5}t\mathbf{i}-\frac{8}{5}t\mathbf{j} \\
+
& \mathbf{a}=\frac{6}{5}t\ \mathbf{i}-\frac{8}{5}t\ \mathbf{j} \text{ m}{{\text{s}}^{\text{-2}}} \\
\end{align}</math>
\end{align}</math>
- 
b) Integrating the acceleration gives the velocity:
b) Integrating the acceleration gives the velocity:
- 
<math>\begin{align}
<math>\begin{align}
-
& \mathbf{v}=\int{\left( \frac{6}{5}t \right)dt\mathbf{i}+\int{\left( -\frac{8}{5}t \right)dt\mathbf{j}}} \\
+
& \mathbf{v}=\int{\left( \frac{6}{5}t \right)dt\ \mathbf{i}+\int{\left( -\frac{8}{5}t \right)dt\ \mathbf{j}}} \\
-
& =\left( \frac{3}{5}{{t}^{2}}+{{c}_{1}} \right)\mathbf{i}+\left( -\frac{4{{t}^{2}}}{5}+{{c}_{2}} \right)\mathbf{j}
+
& =\left( \frac{3}{5}{{t}^{\ 2}}+{{c}_{1}} \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 2}}}{5}+{{c}_{2}} \right)\mathbf{j}
\end{align}</math>
\end{align}</math>
- 
As the initial velocity is
As the initial velocity is
Line 218: Line 192:
and
and
<math>{{c}_{2}}=-3</math>.
<math>{{c}_{2}}=-3</math>.
-
Hence the velocity is given by:
+
Hence the velocity is given by
-
 
+
-
<math>\mathbf{v}=\left( \frac{3}{5}{{t}^{2}}+2 \right)\mathbf{i}+\left( -\frac{4{{t}^{2}}}{5}-3 \right)\mathbf{j}</math>
+
<math>\mathbf{v}=\left( \frac{3}{5}{{t}^{\ 2}}+2 \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 2}}}{5}-3 \right)\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}}</math>
-
 
+
c) Integrating the velocity gives the position vector:
c) Integrating the velocity gives the position vector:
- 
<math>\begin{align}
<math>\begin{align}
-
& \mathbf{r}=\int{\left( \frac{3}{5}{{t}^{2}}+2 \right)}dt\mathbf{i}+\int{\left( -\frac{4{{t}^{2}}}{5}-3 \right)}dt\mathbf{j} \\
+
& \mathbf{r}=\int{\left( \frac{3}{5}{{t}^{\ 2}}+2 \right)}dt\ \mathbf{i}+\int{\left( -\frac{4{{t}^{\ 2}}}{5}-3 \right)}dt\ \mathbf{j} \\
-
& =\left( \frac{{{t}^{3}}}{5}+2t+{{c}_{3}} \right)\mathbf{i}+\left( -\frac{4{{t}^{3}}}{15}-3t+{{c}_{4}} \right)\mathbf{j}
+
& =\left( \frac{{{t}^{\ 3}}}{5}+2t+{{c}_{3}} \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 3}}}{15}-3t+{{c}_{4}} \right)\mathbf{j}
\end{align}</math>
\end{align}</math>
- 
Note that the particle is initially at the origin. So using
Note that the particle is initially at the origin. So using
Line 242: Line 212:
<math>{{c}_{4}}=0</math>.
<math>{{c}_{4}}=0</math>.
Hence the position vector is given by:
Hence the position vector is given by:
- 
-
<math>\mathbf{r}=\left( \frac{{{t}^{3}}}{5}+2t \right)\mathbf{i}+\left( -\frac{4{{t}^{3}}}{15}-3t \right)\mathbf{j}</math>
+
<math>\mathbf{r}=\left( \frac{{{t}^{\ 3}}}{5}+2t \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 3}}}{15}-3t \right)\mathbf{j} \text{ m}</math>

Current revision

       Theory          Exercises      

Key Points

\displaystyle \begin{align}

& v=\int{a}dt \\ & s=\int{v}dt \\ \end{align}

\displaystyle \begin{align}

& \mathbf{v}=\int{\mathbf{a}}dt \\ & \mathbf{r}=\int{\mathbf{v}}dt \\ \end{align}


Don't forget to evaluate constants of integration.


Example 19.1

The acceleration, \displaystyle a , of a particle, at time \displaystyle t seconds is given by:

\displaystyle a=4-\frac{t}{20} \displaystyle \text{m}{{\text{s}}^{-2}}.

This model is valid for \displaystyle 0\le t\le 80. Given that the particle starts at rest, find the distance travelled by the particle when \displaystyle t=\text{ 8}0 .

Solution

First integrate the acceleration to obtain the velocity.

\displaystyle v=\int{\left( 4-\frac{t}{20} \right)}dt=4t-\frac{{{t}^{\ 2}}}{40}+{{c}_{1}}

To find the value of the constant \displaystyle {{c}_{1}} , note that the particle is initially at rest, so that \displaystyle v=0 when \displaystyle t=0. Substituting these values shows that \displaystyle {{c}_{1}}=0. Hence the velocity is:

\displaystyle v=4t-\frac{{{t}^{\ 2}}}{40} \text{ m}{{\text{s}}^{\text{-1}}}

The displacement of the particle can be found by integrating the velocity:

\displaystyle s=\int{\left( 4t-\frac{{{t}^{\ 2}}}{40} \right)}dt=2{{t}^{\ 2}}-\frac{{{t}^{\ 3}}}{120}+{{c}_{2}}

To find the constant \displaystyle {{c}_{2}} , assume that the particle starts at the origin, so that \displaystyle s=0 when \displaystyle t=0. Hence \displaystyle {{c}_{2}}=0 and the displacement at time \displaystyle t is given by:

\displaystyle s=2{{t}^{\ 2}}-\frac{{{t}^{\ 3}}}{120}\text{ m}

To find the distance travelled substitute \displaystyle t=80.

\displaystyle s=2\times {{80}^{2}}-\frac{{{80}^{3}}}{120}=8530\text{ m (to 3sf)}


Example 19.2

A boat has an initial velocity of \displaystyle 0\textrm{.}5\mathbf{j} \text{ m}{{\text{s}}^{-1}} and experiences an acceleration of \displaystyle \left( \frac{3}{10}\mathbf{i}+\left( \frac{t}{50} \right)\mathbf{j} \right) \displaystyle \text{m}{{\text{s}}^{-2}}, at time \displaystyle t seconds. Assume that the boat is initially at the origin. The unit vector \displaystyle \mathbf{i} and \displaystyle \mathbf{j} are directed east and north respectively.

a) Find the velocity of the boat at time \displaystyle t.

b) Find the distance of the boat from the origin when \displaystyle t=\text{ 12}0.

Solution

a) Integrate the acceleration to obtain the velocity:

\displaystyle \begin{align} & \mathbf{v}=\int{\frac{3}{10}dt\ \mathbf{i}+\int{\left( \frac{t}{50} \right)dt\ \mathbf{j}}} \\ & =\left( \frac{3}{10}t+{{c}_{1}} \right)\mathbf{i}+\left( \frac{{{t}^{\ 2}}}{100}+{{c}_{2}} \right)\mathbf{j} \end{align}

When \displaystyle t=0,

\displaystyle \mathbf{v}=0\textrm{.}5\mathbf{j}. These values can be substituted to give \displaystyle {{c}_{1}}=0 and \displaystyle {{c}_{2}}=0\textrm{.}5, so that the velocity is given by:

\displaystyle \mathbf{v}=\left( \frac{3}{10}t \right)\mathbf{i}+\left( \frac{{{t}^{\ 2}}}{100}+0\textrm{.}5 \right)\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}}

b) Integrating the velocity gives the position vector:

\displaystyle \begin{align} & \mathbf{r}=\int{\left( \frac{3}{10}t \right)dt}\ \mathbf{i}+\int{\left( \frac{{{t}^{\ 2}}}{100}+0\textrm{.}5 \right)}dt\ \mathbf{j} \\ & =\left( \frac{3{{t}^{\ 2}}}{20}+{{c}_{3}} \right)\mathbf{i}+\left( \frac{{{t}^{\ 3}}}{300}+0\textrm{.}5t+{{c}_{4}} \right)\mathbf{j} \end{align}

The boat is initially at the origin, so when \displaystyle t=0, the boat has position vector \displaystyle 0\mathbf{i}+0\mathbf{j}. Substituting these values gives \displaystyle {{c}_{3}}=0 and \displaystyle {{c}_{4}}=0. Hence the position vector is:

\displaystyle \mathbf{r}=\left( \frac{3{{t}^{\ 2}}}{20} \right)\mathbf{i}+\left( \frac{{{t}^{\ 3}}}{300}+0\textrm{.}5t \right)\mathbf{j}

Substituting \displaystyle t=\text{12}0 , gives the required position vector.

\displaystyle \mathbf{r}=\left( \frac{3\times {{120}^{\ 2}}}{20} \right)\mathbf{i}+\left( \frac{{{120}^{3}}}{300}+0\textrm{.}5\times 120 \right)\mathbf{j}=2160\mathbf{i}+5820\mathbf{j}

The distance from the origin can now be calculated, by finding the magnitude of the position vector.

\displaystyle s=\sqrt{{{2160}^{2}}+{{5820}^{2}}}=6210\text{ m (to 3sf)}


Example 19.3

At time \displaystyle t seconds the resultant force on a particle, of mass 250 kg is \displaystyle \left( 300t\ \mathbf{i}-400t\ \mathbf{j} \right)N. Initially the particle is at the origin and is moving with velocity (2\displaystyle \mathbf{i} - 3\displaystyle \mathbf{j}) \displaystyle \text{m}{{\text{s}}^{-1}}.

a) Find the acceleration at time \displaystyle t.

b) Find the velocity of the particle at time \displaystyle t.

c) Find the position vector of the particle at time \displaystyle t.

Solution

a) Using Newton’s second Law, \displaystyle \mathbf{F}=m\mathbf{a}, gives:

\displaystyle \begin{align} & 300t\ \mathbf{i}-400t\ \mathbf{j}=250\mathbf{a} \\ & \mathbf{a}=\frac{6}{5}t\ \mathbf{i}-\frac{8}{5}t\ \mathbf{j} \text{ m}{{\text{s}}^{\text{-2}}} \\ \end{align}

b) Integrating the acceleration gives the velocity:

\displaystyle \begin{align} & \mathbf{v}=\int{\left( \frac{6}{5}t \right)dt\ \mathbf{i}+\int{\left( -\frac{8}{5}t \right)dt\ \mathbf{j}}} \\ & =\left( \frac{3}{5}{{t}^{\ 2}}+{{c}_{1}} \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 2}}}{5}+{{c}_{2}} \right)\mathbf{j} \end{align}

As the initial velocity is \displaystyle 2\mathbf{i}-3\mathbf{j}, this can be used with \displaystyle t=0, to show that \displaystyle {{c}_{1}}=2 and \displaystyle {{c}_{2}}=-3. Hence the velocity is given by

\displaystyle \mathbf{v}=\left( \frac{3}{5}{{t}^{\ 2}}+2 \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 2}}}{5}-3 \right)\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}}

c) Integrating the velocity gives the position vector:

\displaystyle \begin{align} & \mathbf{r}=\int{\left( \frac{3}{5}{{t}^{\ 2}}+2 \right)}dt\ \mathbf{i}+\int{\left( -\frac{4{{t}^{\ 2}}}{5}-3 \right)}dt\ \mathbf{j} \\ & =\left( \frac{{{t}^{\ 3}}}{5}+2t+{{c}_{3}} \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 3}}}{15}-3t+{{c}_{4}} \right)\mathbf{j} \end{align}

Note that the particle is initially at the origin. So using \displaystyle \mathbf{r}=0\mathbf{i}+0\mathbf{j} when \displaystyle t=0, gives \displaystyle {{c}_{3}}=0 and \displaystyle {{c}_{4}}=0. Hence the position vector is given by:

\displaystyle \mathbf{r}=\left( \frac{{{t}^{\ 3}}}{5}+2t \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 3}}}{15}-3t \right)\mathbf{j} \text{ m}