4. Forces and vectors
From Mechanics
Line 43: | Line 43: | ||
'''Solution''' | '''Solution''' | ||
- | a) <math>20\cos 40{}^\circ \mathbf{i}+20\sin 40{}^\circ \mathbf{j}</math> | + | a) <math>20\cos 40{}^\circ \mathbf{i}+20\sin 40{}^\circ \mathbf{j}\ \text{N}</math> |
- | b) <math>-80\cos 30{}^\circ \mathbf{i}+80\sin 30{}^\circ \mathbf{j}</math> | + | b) <math>-80\cos 30{}^\circ \mathbf{i}+80\sin 30{}^\circ \mathbf{j}\ \text{N}</math> |
Note the negative sign here in the first term. | Note the negative sign here in the first term. | ||
Line 59: | Line 59: | ||
'''Solution''' | '''Solution''' | ||
- | <math>28\cos 30{}^\circ \mathbf{i}-28\sin 30{}^\circ \mathbf{j}</math> | + | <math>28\cos 30{}^\circ \mathbf{i}-28\sin 30{}^\circ \mathbf{j}\ \text{N}</math> |
Note the negative sign in the second term. | Note the negative sign in the second term. | ||
Line 77: | Line 77: | ||
'''Solution''' | '''Solution''' | ||
- | <math>-50\cos 44{}^\circ \mathbf{i}-50\sin 44{}^\circ \mathbf{j}</math> | + | <math>-50\cos 44{}^\circ \mathbf{i}-50\sin 44{}^\circ \mathbf{j}\ \text{N}</math> |
Note that here both terms are negative. | Note that here both terms are negative. | ||
Line 112: | Line 112: | ||
{| width="100%" cellspacing="10px" align="center" | {| width="100%" cellspacing="10px" align="center" | ||
|align="left"| Force | |align="left"| Force | ||
- | | valign="top"|Vector Form | + | | valign="top"|Vector Form (N) |
|- | |- | ||
|20 N | |20 N | ||
Line 129: | Line 129: | ||
<math>\begin{align} | <math>\begin{align} | ||
& \text{Resultant Force }=\text{ }\left( 20\cos 50{}^\circ -25\cos 20{}^\circ -15\cos 30{}^\circ \right)\mathbf{i}+\left( 20\sin 50{}^\circ -18-25\sin 20{}^\circ +15\sin 30{}^\circ \right)\mathbf{j} \\ | & \text{Resultant Force }=\text{ }\left( 20\cos 50{}^\circ -25\cos 20{}^\circ -15\cos 30{}^\circ \right)\mathbf{i}+\left( 20\sin 50{}^\circ -18-25\sin 20{}^\circ +15\sin 30{}^\circ \right)\mathbf{j} \\ | ||
- | & =-23\textrm{.}627\mathbf{i}-3\textrm{.}730\mathbf{j} | + | & =-23\textrm{.}627\mathbf{i}-3\textrm{.}730\mathbf{j} \ \text{N} |
\end{align}</math> | \end{align}</math> | ||
Revision as of 11:41, 11 February 2010
Theory | Exercises |
Key Points
\displaystyle \begin{align} & \mathbf{F}=F\cos \alpha \mathbf{i}+F\cos (90-\alpha )\mathbf{j} \\ & =F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j} \end{align}
\displaystyle F\cos \alpha is one component of the force. If \displaystyle \mathbf{i} is horizontal, \displaystyle F\cos \alpha is called the horizontal component of the force.
\displaystyle F\sin \alpha
is another component of the force. If \displaystyle \mathbf{j} is vertical,
\displaystyle F\sin \alpha
is called the vertical component of the force.
Express each of the forces given below in the form a\displaystyle \mathbf{i} + b\displaystyle \mathbf{j}.
a)
b)
Solution
a) \displaystyle 20\cos 40{}^\circ \mathbf{i}+20\sin 40{}^\circ \mathbf{j}\ \text{N}
b) \displaystyle -80\cos 30{}^\circ \mathbf{i}+80\sin 30{}^\circ \mathbf{j}\ \text{N}
Note the negative sign here in the first term.
Express the force shown below as a vector in terms of \displaystyle \mathbf{i} and \displaystyle \mathbf{j}.
Solution
\displaystyle 28\cos 30{}^\circ \mathbf{i}-28\sin 30{}^\circ \mathbf{j}\ \text{N}
Note the negative sign in the second term.
Express the force shown below as a vector in terms of \displaystyle \mathbf{i} and \displaystyle \mathbf{j}
Solution
\displaystyle -50\cos 44{}^\circ \mathbf{i}-50\sin 44{}^\circ \mathbf{j}\ \text{N}
Note that here both terms are negative.
Find the magnitude of the force (4\displaystyle \mathbf{i} - 8\displaystyle \mathbf{j}) N. Draw a diagram to show the direction of this force.
Solution
The magnitude, \displaystyle F , of the force is given by,
\displaystyle F=\sqrt{{{4}^{2}}+{{8}^{2}}}=\sqrt{80}=8\textrm{.}94\text{ N (to 3sf)}
The angle, \displaystyle \theta , is given by,
\displaystyle \theta ={{\tan }^{-1}}\left( \frac{8}{4} \right)=63\textrm{.}4{}^\circ
Find the magnitude and direction of the resultant of the four forces shown in the diagram.
Solution
Force | Vector Form (N) |
20 N | \displaystyle 20\cos 50{}^\circ \mathbf{i}+20\sin 50{}^\circ \mathbf{j} |
18 N | \displaystyle -18\mathbf{j} |
25 N | \displaystyle -25\cos 20{}^\circ \mathbf{i}-25\sin 20{}^\circ \mathbf{j} |
15 N | \displaystyle -15\cos 30{}^\circ \mathbf{i}+15\sin 30{}^\circ \mathbf{j} |
\displaystyle \begin{align} & \text{Resultant Force }=\text{ }\left( 20\cos 50{}^\circ -25\cos 20{}^\circ -15\cos 30{}^\circ \right)\mathbf{i}+\left( 20\sin 50{}^\circ -18-25\sin 20{}^\circ +15\sin 30{}^\circ \right)\mathbf{j} \\ & =-23\textrm{.}627\mathbf{i}-3\textrm{.}730\mathbf{j} \ \text{N} \end{align}
The magnitude is given by:
\displaystyle \sqrt{{{23\textrm{.}627}^{2}}+{{3\textrm{.}730}^{2}}}=23\textrm{.}9\text{ N (to 3sf)}
The angle \displaystyle \theta can be found using tan.
\displaystyle \begin{align} & \tan \theta =\frac{3\textrm{.}730}{23\textrm{.}627} \\ & \theta =9\textrm{.}0{}^\circ \end{align}