4. Forces and vectors

From Mechanics

(Difference between revisions)
Jump to: navigation, search
Line 7: Line 7:
|}
|}
 +
 +
== '''Key Points''' ==
<math>\begin{align}
<math>\begin{align}
Line 12: Line 14:
& =F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j}
& =F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j}
\end{align}</math>
\end{align}</math>
- 
- 
[[Image:TF.teori.GIF]]
[[Image:TF.teori.GIF]]
- 
- 
- 
- 
<math>F\cos \alpha </math>
<math>F\cos \alpha </math>
Line 31: Line 27:
<math>F\sin \alpha </math>
<math>F\sin \alpha </math>
is called the vertical component of the force.
is called the vertical component of the force.
 +
'''[[Example 4.1]]'''
'''[[Example 4.1]]'''
Line 36: Line 33:
Express each of the forces given below in the form a<math>\mathbf{i}</math> + b<math>\mathbf{j}</math>.
Express each of the forces given below in the form a<math>\mathbf{i}</math> + b<math>\mathbf{j}</math>.
-
(a)
+
a)
[[Image:TF4.1a.GIF]]
[[Image:TF4.1a.GIF]]
-
(b)
+
b)
[[Image:TF4.1b.GIF]]
[[Image:TF4.1b.GIF]]
Line 46: Line 43:
'''Solution'''
'''Solution'''
-
(a)
+
a) <math>20\cos 40{}^\circ \mathbf{i}+20\sin 40{}^\circ \mathbf{j}</math>
-
+
-
<math>20\cos 40{}^\circ \mathbf{i}+20\sin 40{}^\circ \mathbf{j}</math>
+
-
 
+
-
 
+
-
(b)
+
-
+
-
<math>-80\cos 30{}^\circ \mathbf{i}+80\sin 30{}^\circ \mathbf{j}</math>
+
 +
b) <math>-80\cos 30{}^\circ \mathbf{i}+80\sin 30{}^\circ \mathbf{j}</math>
Note the negative sign here in the first term.
Note the negative sign here in the first term.
-
 
'''[[Example 4.2]]'''
'''[[Example 4.2]]'''
Line 66: Line 56:
[[Image:TF4.2.GIF]]
[[Image:TF4.2.GIF]]
- 
'''Solution'''
'''Solution'''
- 
<math>28\cos 30{}^\circ \mathbf{i}-28\sin 30{}^\circ \mathbf{j}</math>
<math>28\cos 30{}^\circ \mathbf{i}-28\sin 30{}^\circ \mathbf{j}</math>
- 
Note the negative sign in the second term.
Note the negative sign in the second term.
- 
'''[[Example 4.3]]'''
'''[[Example 4.3]]'''
- 
Express the force shown below as a vector in terms of
Express the force shown below as a vector in terms of
Line 91: Line 76:
'''Solution'''
'''Solution'''
-
 
+
-
+
<math>-50\cos 44{}^\circ \mathbf{i}-50\sin 44{}^\circ \mathbf{j}</math>
<math>-50\cos 44{}^\circ \mathbf{i}-50\sin 44{}^\circ \mathbf{j}</math>
- 
Note that here both terms are negative.
Note that here both terms are negative.
Line 109: Line 92:
-
The magnitude, FN , of the force is given by,
+
The magnitude, <math>F</math> , of the force is given by,
<math>F=\sqrt{{{4}^{2}}+{{8}^{2}}}=\sqrt{80}=8.94\text{ N (to 3sf)}</math>
<math>F=\sqrt{{{4}^{2}}+{{8}^{2}}}=\sqrt{80}=8.94\text{ N (to 3sf)}</math>
Line 122: Line 105:
Find the magnitude and direction of the resultant of the four forces shown in the diagram.
Find the magnitude and direction of the resultant of the four forces shown in the diagram.
- 
[[Image:TF4.5.GIF]]
[[Image:TF4.5.GIF]]
- 
'''Solution'''
'''Solution'''
Line 138: Line 119:
| 18 N
| 18 N
|valign="top"| <math>-18\mathbf{j}</math>
|valign="top"| <math>-18\mathbf{j}</math>
- 
|-
|-
| 25 N
| 25 N
Line 146: Line 126:
|valign="top"|<math>-15\cos 30{}^\circ \mathbf{i}+15\sin 30{}^\circ \mathbf{j}</math>
|valign="top"|<math>-15\cos 30{}^\circ \mathbf{i}+15\sin 30{}^\circ \mathbf{j}</math>
|}
|}
- 
- 
- 
- 
- 
- 
- 
- 
- 
<math>\begin{align}
<math>\begin{align}
Line 160: Line 131:
& =-23.627\mathbf{i}-3.730\mathbf{j}
& =-23.627\mathbf{i}-3.730\mathbf{j}
\end{align}</math>
\end{align}</math>
- 
The magnitude is given by:
The magnitude is given by:
-
 
+
-
+
<math>\sqrt{{{23.627}^{2}}+{{3.730}^{2}}}=23.9\text{ N (to 3sf)}</math>
<math>\sqrt{{{23.627}^{2}}+{{3.730}^{2}}}=23.9\text{ N (to 3sf)}</math>
- 
- 
The angle <math>\theta </math> can be found using tan.
The angle <math>\theta </math> can be found using tan.
-
 
+
-
+
<math>\begin{align}
<math>\begin{align}
& \tan \theta =\frac{3.730}{23.627} \\
& \tan \theta =\frac{3.730}{23.627} \\
& \theta =9.0{}^\circ
& \theta =9.0{}^\circ
\end{align}</math>
\end{align}</math>
- 
[[Image:TF4.5a.GIF]]
[[Image:TF4.5a.GIF]]

Revision as of 13:05, 29 January 2010

       Theory          Exercises      


Key Points

\displaystyle \begin{align} & \mathbf{F}=F\cos \alpha \mathbf{i}+F\cos (90-\alpha )\mathbf{j} \\ & =F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j} \end{align}

Image:TF.teori.GIF

\displaystyle F\cos \alpha is one component of the force. If \displaystyle \mathbf{i} is horizontal, \displaystyle F\cos \alpha is called the horizontal component of the force.


\displaystyle F\sin \alpha is another component of the force. If \displaystyle \mathbf{j} is vertical, \displaystyle F\sin \alpha is called the vertical component of the force.


Example 4.1

Express each of the forces given below in the form a\displaystyle \mathbf{i} + b\displaystyle \mathbf{j}.

a)

Image:TF4.1a.GIF

b)

Image:TF4.1b.GIF

Solution

a) \displaystyle 20\cos 40{}^\circ \mathbf{i}+20\sin 40{}^\circ \mathbf{j}

b) \displaystyle -80\cos 30{}^\circ \mathbf{i}+80\sin 30{}^\circ \mathbf{j}

Note the negative sign here in the first term.


Example 4.2

Express the force shown below as a vector in terms of \displaystyle \mathbf{i} and \displaystyle \mathbf{j}.


Image:TF4.2.GIF

Solution

\displaystyle 28\cos 30{}^\circ \mathbf{i}-28\sin 30{}^\circ \mathbf{j}

Note the negative sign in the second term.


Example 4.3

Express the force shown below as a vector in terms of \displaystyle \mathbf{i} and \displaystyle \mathbf{j}


Image:TF4.3.GIF


Solution

\displaystyle -50\cos 44{}^\circ \mathbf{i}-50\sin 44{}^\circ \mathbf{j}

Note that here both terms are negative.


Example 4.4

Find the magnitude of the force (4\displaystyle \mathbf{i} - 8\displaystyle \mathbf{j}) N. Draw a diagram to show the direction of this force.

Solution

Image:TF4.4.GIF


The magnitude, \displaystyle F , of the force is given by,

\displaystyle F=\sqrt{{{4}^{2}}+{{8}^{2}}}=\sqrt{80}=8.94\text{ N (to 3sf)}


The angle, \displaystyle \theta , is given by,

\displaystyle \theta ={{\tan }^{-1}}\left( \frac{8}{4} \right)=63.4{}^\circ


Example 4.5

Find the magnitude and direction of the resultant of the four forces shown in the diagram.

Image:TF4.5.GIF

Solution

Force Vector Form
20 N \displaystyle 20\cos 50{}^\circ \mathbf{i}+20\sin 50{}^\circ \mathbf{j}
18 N \displaystyle -18\mathbf{j}
25 N \displaystyle -25\cos 20{}^\circ \mathbf{i}-25\sin 20{}^\circ \mathbf{j}
15 N \displaystyle -15\cos 30{}^\circ \mathbf{i}+15\sin 30{}^\circ \mathbf{j}

\displaystyle \begin{align} & \text{Resultant Force }=\text{ }\left( 20\cos 50{}^\circ -25\cos 20{}^\circ -15\cos 30{}^\circ \right)\mathbf{i}+\left( 20\sin 50{}^\circ -18-25\sin 20{}^\circ +15\sin 30{}^\circ \right)\mathbf{j} \\ & =-23.627\mathbf{i}-3.730\mathbf{j} \end{align}

The magnitude is given by:

\displaystyle \sqrt{{{23.627}^{2}}+{{3.730}^{2}}}=23.9\text{ N (to 3sf)}

The angle \displaystyle \theta can be found using tan.

\displaystyle \begin{align} & \tan \theta =\frac{3.730}{23.627} \\ & \theta =9.0{}^\circ \end{align}

Image:TF4.5a.GIF