13. Moments
From Mechanics
(New page: __NOTOC__ {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | style="border-bottom:1px solid #797979" width="5px" | {{Selected tab|Theory}} {{No...) |
|||
Line 6: | Line 6: | ||
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
+ | |||
+ | |||
+ | |||
+ | Key Points | ||
+ | |||
+ | The moment of the force about the point O is the product of the force and the perpendicular distance to the line of action of the force from O. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <math>\text{Moment }=Fd</math> | ||
+ | |||
+ | <math>\text{Moment }=Fd\sin \theta </math> | ||
+ | |||
+ | |||
+ | Clockwise moments are negative. | ||
+ | Anti-clockwise moments are positive. | ||
+ | |||
+ | |||
+ | Example 11.1 | ||
+ | Find the moment of each force shown below about the point O. | ||
+ | |||
+ | (a) (b) | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Solution | ||
+ | (a) (b) | ||
+ | |||
+ | <math>20\times 0.8=16</math> | ||
+ | |||
+ | <math>12\times 1.2=14.4</math> | ||
+ | |||
+ | |||
+ | Moment is -16 Nm Moment is 14.4 Nm | ||
+ | |||
+ | Example 13.2 | ||
+ | Find the moment of each force shown below about the point O. | ||
+ | (a) (b) | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Solution | ||
+ | (a) (b) | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <math>40\times 3\sin 60{}^\circ =104</math> | ||
+ | |||
+ | <math>100\times 2\sin 20{}^\circ =68.4</math> | ||
+ | |||
+ | |||
+ | Moment is 104 Nm (to 3 sf) Moment is 68.4 Nm (to 3 sf) | ||
+ | |||
+ | Example 13.3 | ||
+ | For the rectangular lamina shown below, find the total moment of the forces acting, about the corner marked O. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Solution | ||
+ | |||
+ | Force Moment | ||
+ | 5N at O | ||
+ | <math>5\times 0=0</math> | ||
+ | |||
+ | 8 N | ||
+ | <math>-8\times 1.2=-9.6</math> | ||
+ | |||
+ | 7 N | ||
+ | <math>7\times 0=0</math> | ||
+ | |||
+ | 6 N | ||
+ | <math>-6\times 0.5=-3</math> | ||
+ | |||
+ | 5 N | ||
+ | <math>5\times 1.2=6</math> | ||
+ | |||
+ | 4 N | ||
+ | <math>4\times 0.5=2</math> | ||
+ | |||
+ | Total Moment | ||
+ | <math>0-9.6+0-3+6+2=-4.6\text{ Nm}</math> |
Revision as of 16:04, 17 September 2009
Theory | Exercises |
Key Points
The moment of the force about the point O is the product of the force and the perpendicular distance to the line of action of the force from O.
\displaystyle \text{Moment }=Fd
\displaystyle \text{Moment }=Fd\sin \theta
Clockwise moments are negative.
Anti-clockwise moments are positive.
Example 11.1
Find the moment of each force shown below about the point O.
(a) (b)
Solution
(a) (b)
\displaystyle 20\times 0.8=16
\displaystyle 12\times 1.2=14.4
Moment is -16 Nm Moment is 14.4 Nm
Example 13.2 Find the moment of each force shown below about the point O. (a) (b)
Solution
(a) (b)
\displaystyle 40\times 3\sin 60{}^\circ =104
\displaystyle 100\times 2\sin 20{}^\circ =68.4
Moment is 104 Nm (to 3 sf) Moment is 68.4 Nm (to 3 sf)
Example 13.3 For the rectangular lamina shown below, find the total moment of the forces acting, about the corner marked O.
Solution
Force Moment 5N at O \displaystyle 5\times 0=0
8 N \displaystyle -8\times 1.2=-9.6
7 N \displaystyle 7\times 0=0
6 N \displaystyle -6\times 0.5=-3
5 N \displaystyle 5\times 1.2=6
4 N \displaystyle 4\times 0.5=2
Total Moment \displaystyle 0-9.6+0-3+6+2=-4.6\text{ Nm}