4. Forces and Vectors

From Mechanics

(Difference between revisions)
Jump to: navigation, search
Line 6: Line 6:
-
 
+
[[Image:TF.teori.GIF]]
Line 13: Line 13:
<math>F\cos \alpha </math>
<math>F\cos \alpha </math>
-
is one component of the force. If i is horizontal,
+
is one component of the force. If <math>\mathbf{i}</math> is horizontal,
<math>F\cos \alpha </math>
<math>F\cos \alpha </math>
is called the horizontal component of the force.
is called the horizontal component of the force.
Line 19: Line 19:
<math>F\sin \alpha </math>
<math>F\sin \alpha </math>
-
is another component of the force. If j is vertical,
+
is another component of the force. If <math>\mathbf{j}</math> is vertical,
<math>F\sin \alpha </math>
<math>F\sin \alpha </math>
is called the vertical component of the force.
is called the vertical component of the force.
Line 25: Line 25:
'''[[Example 4.1]]'''
'''[[Example 4.1]]'''
-
Express each of the forces given below in the form ai + bj.
+
Express each of the forces given below in the form a<math>\mathbf{i}</math> + b<math>\mathbf{j}</math>.
 +
(a)
 +
[[Image:TF4.1a.GIF]]
 +
(b)
 +
[[Image:TF4.1b.GIF]]
'''Solution'''
'''Solution'''
Line 44: Line 48:
Note the negative sign here in the first term.
Note the negative sign here in the first term.
 +
 +
'''[[Example 4.2]]'''
'''[[Example 4.2]]'''
-
Express the force shown below as a vector in terms of i and j.
+
Express the force shown below as a vector in terms of <math>\mathbf{i}</math> and <math>\mathbf{j}</math>.
-
 
+
 +
[[Image:TF4.2.GIF]]
Line 60: Line 66:
Note the negative sign in the second term.
Note the negative sign in the second term.
 +
 +
'''[[Example 4.3]]'''
'''[[Example 4.3]]'''
 +
Express the force shown below as a vector in terms of
 +
<math>\mathbf{i}</math>
 +
and
 +
<math>\mathbf{j}</math>
 +
 +
[[Image:TF4.3.GIF]]
Line 74: Line 88:
Note that here both terms are negative.
Note that here both terms are negative.
 +
 +
'''[[Example 4.4]]'''
'''[[Example 4.4]]'''
-
Find the magnitude of the force (4i - 8j) N. Draw a diagram to show the direction of this force.
+
Find the magnitude of the force (4<math>\mathbf{i}</math> - 8<math>\mathbf{j}</math>) N. Draw a diagram to show the direction of this force.
'''Solution'''
'''Solution'''

Revision as of 14:50, 19 March 2009

\displaystyle \begin{align} & \mathbf{F}=F\cos \alpha \mathbf{i}+F\cos (90-\alpha )\mathbf{j} \\ & =F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j} \end{align}


Image:TF.teori.GIF



\displaystyle F\cos \alpha is one component of the force. If \displaystyle \mathbf{i} is horizontal, \displaystyle F\cos \alpha is called the horizontal component of the force.


\displaystyle F\sin \alpha is another component of the force. If \displaystyle \mathbf{j} is vertical, \displaystyle F\sin \alpha is called the vertical component of the force.

Example 4.1

Express each of the forces given below in the form a\displaystyle \mathbf{i} + b\displaystyle \mathbf{j}.

(a)

Image:TF4.1a.GIF

(b)

Image:TF4.1b.GIF

Solution

(a)

\displaystyle 20\cos 40{}^\circ \mathbf{i}+20\sin 40{}^\circ \mathbf{j}


(b)

\displaystyle -80\cos 30{}^\circ \mathbf{i}+80\sin 30{}^\circ \mathbf{j}


Note the negative sign here in the first term.


Example 4.2

Express the force shown below as a vector in terms of \displaystyle \mathbf{i} and \displaystyle \mathbf{j}.


Image:TF4.2.GIF


Solution


\displaystyle 28\cos 30{}^\circ \mathbf{i}-28\sin 30{}^\circ \mathbf{j}


Note the negative sign in the second term.


Example 4.3


Express the force shown below as a vector in terms of \displaystyle \mathbf{i} and \displaystyle \mathbf{j}


Image:TF4.3.GIF


Solution


\displaystyle -50\cos 44{}^\circ \mathbf{i}-50\sin 44{}^\circ \mathbf{j}


Note that here both terms are negative.


Example 4.4

Find the magnitude of the force (4\displaystyle \mathbf{i} - 8\displaystyle \mathbf{j}) N. Draw a diagram to show the direction of this force.

Solution

The magnitude, FN , of the force is given by,

\displaystyle F=\sqrt{{{4}^{2}}+{{8}^{2}}}=\sqrt{80}=8.94\text{ N (to 3sf)}


The angle, \displaystyle \theta , is given by,

\displaystyle \theta ={{\tan }^{-1}}\left( \frac{8}{4} \right)=63.4{}^\circ


Example 4.5

Find the magnitude and direction of the resultant of the four forces shown in the diagram.



Solution

Force Vector Form 20 N \displaystyle 20\cos 50{}^\circ \mathbf{i}+20\sin 50{}^\circ \mathbf{j}

18 N \displaystyle -18\mathbf{j}

25 N \displaystyle -25\cos 20{}^\circ \mathbf{i}-25\sin 20{}^\circ \mathbf{j}

15 N \displaystyle -15\cos 30{}^\circ \mathbf{i}+15\sin 30{}^\circ \mathbf{j}


\displaystyle \begin{align} & \text{Resultant Force }=\text{ }\left( 20\cos 50{}^\circ -25\cos 20{}^\circ -15\cos 30{}^\circ \right)\mathbf{i}+\left( 20\sin 50{}^\circ -18-25\sin 20{}^\circ +15\sin 30{}^\circ \right)\mathbf{j} \\ & =-23.627\mathbf{i}-3.730\mathbf{j} \end{align}


The magnitude is given by:


\displaystyle \sqrt{{{23.627}^{2}}+{{3.730}^{2}}}=23.9\text{ N (to 3sf)}


The angle \displaystyle \theta can be found using tan.


\displaystyle \begin{align} & \tan \theta =\frac{3.730}{23.627} \\ & \theta =9.0{}^\circ \end{align}