16. Conservation of momentum

From Mechanics

(Difference between revisions)
Jump to: navigation, search
Current revision (15:33, 10 April 2011) (edit) (undo)
 
(2 intermediate revisions not shown.)
Line 11: Line 11:
== '''Key Points''' ==
== '''Key Points''' ==
-
In all collisions, where no external forces act, momentum will be conserved and we can apply
+
In all collisions, where no external forces act, momentum will be conserved and thus the total momentum just after the collision will be the same as the total momentum just before the collision, which gives,
<math>{{m}_{A}}{{v}_{A}}+{{m}_{B}}{{v}_{B}}={{m}_{A}}{{u}_{A}}+{{m}_{B}}{{u}_{B}}</math>
<math>{{m}_{A}}{{v}_{A}}+{{m}_{B}}{{v}_{B}}={{m}_{A}}{{u}_{A}}+{{m}_{B}}{{u}_{B}}</math>
Line 29: Line 29:
Before the collision:
Before the collision:
-
<math>{{u}_{B}}=250</math>
+
<math>{{u}_{B}}=250\text{ m}{{\text{s}}^{\text{-1}}}</math>
and
and
<math>{{u}_{T}}=0</math>
<math>{{u}_{T}}=0</math>
Line 35: Line 35:
After the collision:
After the collision:
-
<math>{{v}_{B}}={{v}_{T}}=10</math>
+
<math>{{v}_{B}}={{v}_{T}}=10\text{ m}{{\text{s}}^{\text{-1}}}</math>
Also the mass of the bullet should be converted to kg:
Also the mass of the bullet should be converted to kg:
Line 58: Line 58:
Before the collision:
Before the collision:
-
<math>{{u}_{V}}=12</math>
+
<math>{{u}_{V}}=12\text{ m}{{\text{s}}^{\text{-1}}}</math>
and
and
<math>{{u}_{C}}=0</math>
<math>{{u}_{C}}=0</math>
Line 116: Line 116:
Before the collision:
Before the collision:
-
<math>{{\mathbf{u}}_{A}}=4\mathbf{i}+2\mathbf{j}</math>
+
<math>{{\mathbf{u}}_{A}}=4\mathbf{i}+2\mathbf{j}\text{ m}{{\text{s}}^{\text{-1}}}</math>
and
and
-
<math>{{\mathbf{u}}_{B}}=2\mathbf{i}-4\mathbf{j}</math>
+
<math>{{\mathbf{u}}_{B}}=2\mathbf{i}-4\mathbf{j}\text{ m}{{\text{s}}^{\text{-1}}}</math>
After the collision:
After the collision:
<math>{{\mathbf{v}}_{A}}={{\mathbf{v}}_{B}}=\mathbf{v}</math>
<math>{{\mathbf{v}}_{A}}={{\mathbf{v}}_{B}}=\mathbf{v}</math>
-
The masses are defined:
+
The masses are defined (in kg):
<math>{{m}_{A}}=2</math>
<math>{{m}_{A}}=2</math>
and
and
Line 135: Line 135:
& 8\mathbf{i}+4\mathbf{j}+6\mathbf{i}-12\mathbf{j}=5\mathbf{v} \\
& 8\mathbf{i}+4\mathbf{j}+6\mathbf{i}-12\mathbf{j}=5\mathbf{v} \\
& 14\mathbf{i}-8\mathbf{j}=5\mathbf{v} \\
& 14\mathbf{i}-8\mathbf{j}=5\mathbf{v} \\
-
& \mathbf{v}=\frac{14\mathbf{i}-8\mathbf{j}}{5}=2\textrm{.}8\mathbf{i}-1\textrm{.}6\mathbf{j}
+
& \mathbf{v}=\frac{\smash{14\mathbf{i}-8\mathbf{j}}}{5}=2\textrm{.}8\mathbf{i}-1\textrm{.}6\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}}
\end{align}</math>
\end{align}</math>
Line 149: Line 149:
[[Image:E16.4fig1.GIF]]
[[Image:E16.4fig1.GIF]]
-
<math>{{\mathbf{u}}_{C}}=15\mathbf{i}</math>
+
<math>{{\mathbf{u}}_{C}}=15\mathbf{i}\text{ m}{{\text{s}}^{\text{-1}}}</math>
and
and
-
<math>{{\mathbf{u}}_{V}}=U\mathbf{j}</math>
+
<math>{{\mathbf{u}}_{V}}=U\mathbf{j}\text{ m}{{\text{s}}^{\text{-1}}}</math>
This diagram shows the velocity after the collision.
This diagram shows the velocity after the collision.
Line 157: Line 157:
[[Image:E16.4fig2.GIF]]
[[Image:E16.4fig2.GIF]]
-
<math>{{\mathbf{v}}_{C}}={{\mathbf{v}}_{V}}=V\cos 20{}^\circ \mathbf{i}+V\sin 20{}^\circ \mathbf{j}</math>
+
<math>{{\mathbf{v}}_{C}}={{\mathbf{v}}_{V}}=V\cos 20{}^\circ \mathbf{i}+V\sin 20{}^\circ \mathbf{j}\text{ m}{{\text{s}}^{\text{-1}}}</math>
Using conservation of momentum gives:
Using conservation of momentum gives:

Current revision

       Theory          Exercises      


Key Points

In all collisions, where no external forces act, momentum will be conserved and thus the total momentum just after the collision will be the same as the total momentum just before the collision, which gives,

\displaystyle {{m}_{A}}{{v}_{A}}+{{m}_{B}}{{v}_{B}}={{m}_{A}}{{u}_{A}}+{{m}_{B}}{{u}_{B}}

or

\displaystyle {{m}_{A}}{{\mathbf{v}}_{A}}+{{m}_{B}}{{\mathbf{v}}_{B}}={{m}_{A}}{{\mathbf{u}}_{A}}+{{m}_{B}}{{\mathbf{u}}_{B}}


Example 16.1

A bullet of mass 40 grams is travelling horizontally at 250 \displaystyle \text{m}{{\text{s}}^{-1}}. It hits a wooden trolley that is at rest. The bullet and trolley then move together at 10 \displaystyle \text{m}{{\text{s}}^{-1}}.Assume that the bullet and trolley move along a straight line. Find the mass of the trolley.

Solution

Before the collision:

\displaystyle {{u}_{B}}=250\text{ m}{{\text{s}}^{\text{-1}}} and \displaystyle {{u}_{T}}=0

After the collision:

\displaystyle {{v}_{B}}={{v}_{T}}=10\text{ m}{{\text{s}}^{\text{-1}}}

Also the mass of the bullet should be converted to kg:

\displaystyle {{m}_{B}}=0\textrm{.}04

Using conservation of momentum gives:

\displaystyle \begin{align} & {{m}_{B}}{{u}_{B}}+{{m}_{T}}{{u}_{T}}={{m}_{B}}{{v}_{B}}+{{m}_{T}}{{v}_{T}} \\ & 0\textrm{.}04\times 250+{{m}_{T}}\times 0=0\textrm{.}04\times 10+{{m}_{T}}\times 10 \\ & 10=0\textrm{.}4+10{{m}_{T}} \\ & {{m}_{T}}=\frac{10-0\textrm{.}4}{10}=0\textrm{.}96\text{ kg} \end{align}


Example 16.2

A van, of mass 2.5 tonnes, drives directly into the back of a stationary car, of mass 1.5 tonnes. The van was travelling at 12 \displaystyle \text{m}{{\text{s}}^{-1}} and both vehicles move together along a straight line after the collision. Find the speed of the vehicles after the collision.

Solution

Before the collision: \displaystyle {{u}_{V}}=12\text{ m}{{\text{s}}^{\text{-1}}} and \displaystyle {{u}_{C}}=0

After the collision: \displaystyle {{v}_{V}}={{v}_{C}}=v

The masses should be converted to kilograms:

\displaystyle {{m}_{V}}=2500 and \displaystyle {{m}_{C}}=1500

Using conservation of momentum gives:

\displaystyle \begin{align} & {{m}_{V}}{{u}_{V}}+{{m}_{C}}{{u}_{C}}={{m}_{V}}{{v}_{V}}+{{m}_{C}}{{v}_{C}} \\ & 2500\times 12+1500\times 0=2500v+1500v \\ & 30000=4000v \\ & v=\frac{30000}{4000}=7\textrm{.}5\text{ m}{{\text{s}}^{\text{-1}}} \end{align}


Example 16.3

Two particles, A and B of mass m and 3m are moving towards each other with speeds of 4u and u respectively along a straight line. They collide and coalesce. Describe how the motion of each particle changes during the collision.

Solution

Before the collision: \displaystyle {{u}_{A}}=4u and \displaystyle {{u}_{B}}=-u

After the collision: \displaystyle {{v}_{A}}={{v}_{B}}=v

Using conservation of momentum gives:

\displaystyle \begin{align} & {{m}_{A}}{{u}_{A}}+{{m}_{B}}{{u}_{B}}={{m}_{A}}{{v}_{A}}+{{m}_{B}}{{v}_{B}} \\ & m\times 4u+3m\times (-u)=mv+3mv \\ & mu=4mv \\ & v=\frac{mu}{4mu}=\frac{u}{4} \end{align}


Example 16.4

A particle, A, of mass 2 kg has velocity \displaystyle (4\mathbf{i}+2\mathbf{j})\text{ m}{{\text{s}}^{\text{-1}}} . It collides with a second particle, B, of mass 3 kg and velocity \displaystyle (2\mathbf{i}-4\mathbf{j})\text{ m}{{\text{s}}^{\text{-1}}} . If the particles coalesce during the collision, find their final velocity.

Solution

Before the collision: \displaystyle {{\mathbf{u}}_{A}}=4\mathbf{i}+2\mathbf{j}\text{ m}{{\text{s}}^{\text{-1}}} and \displaystyle {{\mathbf{u}}_{B}}=2\mathbf{i}-4\mathbf{j}\text{ m}{{\text{s}}^{\text{-1}}}

After the collision: \displaystyle {{\mathbf{v}}_{A}}={{\mathbf{v}}_{B}}=\mathbf{v}

The masses are defined (in kg): \displaystyle {{m}_{A}}=2 and \displaystyle {{m}_{B}}=3

Using conservation of momentum gives:

\displaystyle \begin{align} & {{m}_{A}}{{\mathbf{u}}_{A}}+{{m}_{B}}{{\mathbf{u}}_{B}}={{m}_{A}}{{\mathbf{v}}_{A}}+{{m}_{B}}{{\mathbf{v}}_{B}} \\ & 2\times (4\mathbf{i}+2\mathbf{j})+3\times (2\mathbf{i}-4\mathbf{j})=2\mathbf{v}+3\mathbf{v} \\ & 8\mathbf{i}+4\mathbf{j}+6\mathbf{i}-12\mathbf{j}=5\mathbf{v} \\ & 14\mathbf{i}-8\mathbf{j}=5\mathbf{v} \\ & \mathbf{v}=\frac{\smash{14\mathbf{i}-8\mathbf{j}}}{5}=2\textrm{.}8\mathbf{i}-1\textrm{.}6\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}} \end{align}


Example 16.5

A car, of mass 1.2 tonnes, is travelling at 15 \displaystyle \text{m}{{\text{s}}^{-1}}, when it is hit by a van, of mass 1.4 tonnes, travelling at right angles to the path of the first car. After the collision the two vehicles move together at an angle of 20\displaystyle {}^\circ to the original motion of the car. Find the speed of the heavier van just before the collision.

Solution

This diagram shows the velocities before the collision.

Image:E16.4fig1.GIF

\displaystyle {{\mathbf{u}}_{C}}=15\mathbf{i}\text{ m}{{\text{s}}^{\text{-1}}} and \displaystyle {{\mathbf{u}}_{V}}=U\mathbf{j}\text{ m}{{\text{s}}^{\text{-1}}}

This diagram shows the velocity after the collision.

Image:E16.4fig2.GIF

\displaystyle {{\mathbf{v}}_{C}}={{\mathbf{v}}_{V}}=V\cos 20{}^\circ \mathbf{i}+V\sin 20{}^\circ \mathbf{j}\text{ m}{{\text{s}}^{\text{-1}}}

Using conservation of momentum gives:

\displaystyle \begin{align} & {{m}_{C}}{{\mathbf{u}}_{C}}+{{m}_{V}}{{\mathbf{u}}_{V}}={{m}_{C}}{{\mathbf{v}}_{C}}+{{m}_{V}}{{\mathbf{v}}_{V}} \\ & 1200\times 15\mathbf{i}+1400\times U\mathbf{j}=2600(V\cos 20{}^\circ \mathbf{i}+V\sin 20{}^\circ \mathbf{j}) \end{align}

Considering the \displaystyle \mathbf{i} component gives:

\displaystyle \begin{align} & 1200\times 15=2600V\cos 20{}^\circ \\ & V=\frac{1200\times 15}{2600\cos 20{}^\circ }=\frac{180}{26\cos 20{}^\circ }=7\textrm{.}36\text{ m}{{\text{s}}^{\text{-1}}} \end{align}

Considering the \displaystyle \mathbf{j} component gives:

\displaystyle \begin{align} & 1400U=2600\times \frac{180}{26\cos 20{}^\circ }\times \sin 20{}^\circ \\ & U=\frac{2600\times 180}{1400\times 26}\tan 20{}^\circ =4\textrm{.}68\text{ m}{{\text{s}}^{\text{-1}}} \end{align}