Solution 19.3c
From Mechanics
(Difference between revisions)
(New page: <math>\begin{align} & s(10)=\int_{0}^{10}{v}dt \\ & \\ & =\int_{0}^{10}{\left( 8t-\frac{2{{t}^{2}}}{5} \right)dt} \\ & \\ & =\left[ 4{{t}^{2}}-\frac{2{{t}^{3}}}{15} \right]_{0}^{10} ...) |
|||
Line 1: | Line 1: | ||
+ | Using the result for the velocity obtained in part a) | ||
+ | |||
<math>\begin{align} | <math>\begin{align} | ||
& s(10)=\int_{0}^{10}{v}dt \\ | & s(10)=\int_{0}^{10}{v}dt \\ |
Current revision
Using the result for the velocity obtained in part a)
\displaystyle \begin{align} & s(10)=\int_{0}^{10}{v}dt \\ & \\ & =\int_{0}^{10}{\left( 8t-\frac{2{{t}^{2}}}{5} \right)dt} \\ & \\ & =\left[ 4{{t}^{2}}-\frac{2{{t}^{3}}}{15} \right]_{0}^{10} \\ & \\ & =\left( 4\times {{10}^{2}}-\frac{2\times {{10}^{3}}}{15} \right)-0 \\ & \\ & =267\text{ m} \end{align}