Solution 19.2b

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: <math>\begin{align} & s(50)=\int_{0}^{50}{v}dt \\ & \\ & =\int_{0}^{50}{\left( \frac{{{t}^{2}}}{50}+2 \right)dt} \\ & \\ & =\left[ \frac{{{t}^{3}}}{150}+2t \right]_{0}^{50} \\ & \\...)
Current revision (09:36, 11 October 2010) (edit) (undo)
 
Line 1: Line 1:
 +
Using the result for the velocity obtained in part a)
 +
<math>\begin{align}
<math>\begin{align}
& s(50)=\int_{0}^{50}{v}dt \\
& s(50)=\int_{0}^{50}{v}dt \\

Current revision

Using the result for the velocity obtained in part a)

\displaystyle \begin{align} & s(50)=\int_{0}^{50}{v}dt \\ & \\ & =\int_{0}^{50}{\left( \frac{{{t}^{2}}}{50}+2 \right)dt} \\ & \\ & =\left[ \frac{{{t}^{3}}}{150}+2t \right]_{0}^{50} \\ & \\ & =\left( \frac{{{50}^{3}}}{150}+2\times 50 \right)-0 \\ & \\ & =933\text{ m} \end{align}