Solution 10.7
From Mechanics
Line 8: | Line 8: | ||
& \to :\ 40\cos {{30}^{\circ }}-F=ma \\ | & \to :\ 40\cos {{30}^{\circ }}-F=ma \\ | ||
\end{align}</math> ration is represented by the vector <math>a</math>. | \end{align}</math> ration is represented by the vector <math>a</math>. | ||
+ | |||
+ | We need to obtain <math>F</math>. | ||
Note that <math>R</math> is NOT equal to <math>mg</math> here as the string has a component force in the vertical direction! In fact one has, | Note that <math>R</math> is NOT equal to <math>mg</math> here as the string has a component force in the vertical direction! In fact one has, | ||
Line 22: | Line 24: | ||
& F=\mu R \\ | & F=\mu R \\ | ||
& \\ | & \\ | ||
- | & F =0\textrm{.}5 \times 9\textrm{.}43 = 4\textrm{.} | + | & F =0\textrm{.}5 \times 9\textrm{.}43 = 4\textrm{.}71 \ \text{N} \\ |
+ | \end{align}</math> | ||
+ | |||
+ | Substituting in the above equation of motion (Newton´s Second Law) gives, | ||
+ | |||
+ | <math>\begin{align} | ||
+ | & 3a=40\times 0\textrm{.}866-4\textrm{.}71=29\textrm{.}93 \\ | ||
+ | & \\ | ||
+ | & a=9\textrm{.}98\ \text{m}{{\text{s}}^{-2}} \\ | ||
\end{align}</math> | \end{align}</math> |
Current revision
We have drawn all the forces acting on the block in the figure. The acceleration is represented by the vector \displaystyle a.
Applying Newton´s Second Law \displaystyle F=ma horisontally,
\displaystyle \begin{align} & \to :\ 40\cos {{30}^{\circ }}-F=ma \\ \end{align} ration is represented by the vector \displaystyle a.
We need to obtain \displaystyle F.
Note that \displaystyle R is NOT equal to \displaystyle mg here as the string has a component force in the vertical direction! In fact one has,
\displaystyle \begin{align} & \uparrow :\ R+40\sin {{30}^{\circ }}-mg=0 \\ & \\ & F=mg-40\sin {{30}^{\circ }}=3\times 9\textrm{.}81-40\times \frac{1}{2}=29\textrm{.}43-20=9\textrm{.}43\ \text{N} \\ \end{align}
Using the friction equation gives
\displaystyle \begin{align} & F=\mu R \\ & \\ & F =0\textrm{.}5 \times 9\textrm{.}43 = 4\textrm{.}71 \ \text{N} \\ \end{align}
Substituting in the above equation of motion (Newton´s Second Law) gives,
\displaystyle \begin{align} & 3a=40\times 0\textrm{.}866-4\textrm{.}71=29\textrm{.}93 \\ & \\ & a=9\textrm{.}98\ \text{m}{{\text{s}}^{-2}} \\ \end{align}