Solution 7.4c
From Mechanics
(Difference between revisions)
Line 1: | Line 1: | ||
We insert | We insert | ||
<math>t=0\ \text{s}</math> | <math>t=0\ \text{s}</math> | ||
- | in the expression for the position vector to find the point where the frisby | + | in the expression for the position vector to find the point where the frisby was thrown from. |
Line 7: | Line 7: | ||
& \mathbf{r}=\left( 5\times 0-{{0}^{2}} \right)\mathbf{i}+\left( 7\times 0 \right)\mathbf{j}+0\mathbf{k} \\ | & \mathbf{r}=\left( 5\times 0-{{0}^{2}} \right)\mathbf{i}+\left( 7\times 0 \right)\mathbf{j}+0\mathbf{k} \\ | ||
& \\ | & \\ | ||
- | & = | + | & =0\mathbf{i}+0\mathbf{j}+0\mathbf{k}\ \text{m}\\ |
\end{align}</math> | \end{align}</math> | ||
- | + | Thus the point where the frisby was thrown from is the origin. | |
- | + | ||
- | + | Using the result from part b) | |
- | <math>\ | + | |
- | + | <math>\begin{align} | |
+ | & \mathbf{r}=-24\mathbf{i}+56\mathbf{j}+0\mathbf{k}\ \text{m} | ||
+ | \end{align}</math> | ||
+ | |||
+ | we get the distance from the origin to where it hits the ground is | ||
+ | |||
+ | <math>\sqrt{{{\left( -24 \right)}^{2}}+{{56}^{2}}}=\sqrt{576+3136}=\sqrt{3712}=60\textrm{.}9\ \text{m}</math> |
Current revision
We insert \displaystyle t=0\ \text{s} in the expression for the position vector to find the point where the frisby was thrown from.
\displaystyle \begin{align}
& \mathbf{r}=\left( 5\times 0-{{0}^{2}} \right)\mathbf{i}+\left( 7\times 0 \right)\mathbf{j}+0\mathbf{k} \\
& \\
& =0\mathbf{i}+0\mathbf{j}+0\mathbf{k}\ \text{m}\\
\end{align}
Thus the point where the frisby was thrown from is the origin.
Using the result from part b)
\displaystyle \begin{align} & \mathbf{r}=-24\mathbf{i}+56\mathbf{j}+0\mathbf{k}\ \text{m} \end{align}
we get the distance from the origin to where it hits the ground is
\displaystyle \sqrt{{{\left( -24 \right)}^{2}}+{{56}^{2}}}=\sqrt{576+3136}=\sqrt{3712}=60\textrm{.}9\ \text{m}