Solution 7.4c

From Mechanics

(Difference between revisions)
Jump to: navigation, search
Current revision (14:56, 14 May 2010) (edit) (undo)
 
Line 1: Line 1:
We insert
We insert
<math>t=0\ \text{s}</math>
<math>t=0\ \text{s}</math>
-
in the expression for the position vector to find the point where the frisby waqs thrown from.
+
in the expression for the position vector to find the point where the frisby was thrown from.
Line 7: Line 7:
& \mathbf{r}=\left( 5\times 0-{{0}^{2}} \right)\mathbf{i}+\left( 7\times 0 \right)\mathbf{j}+0\mathbf{k} \\
& \mathbf{r}=\left( 5\times 0-{{0}^{2}} \right)\mathbf{i}+\left( 7\times 0 \right)\mathbf{j}+0\mathbf{k} \\
& \\
& \\
-
& =-24\mathbf{i}+56\mathbf{j}+0\mathbf{k}\ \text{m} \\
+
& =0\mathbf{i}+0\mathbf{j}+0\mathbf{k}\ \text{m}\\
\end{align}</math>
\end{align}</math>
-
The point where the frisby was thrown is the origin. This is obtained by putting
+
Thus the point where the frisby was thrown from is the origin.
-
<math>t=0</math>
+
 
-
in the expression for
+
Using the result from part b)
-
<math>\mathbf{r}</math>
+
 
-
giving <math>\mathbf{r} =0\mathbf{i}+0\mathbf{j}+0\mathbf{k}\ \text{m}</math>.
+
<math>\begin{align}
 +
& \mathbf{r}=-24\mathbf{i}+56\mathbf{j}+0\mathbf{k}\ \text{m}
 +
\end{align}</math>
 +
 
 +
we get the distance from the origin to where it hits the ground is
 +
 
 +
<math>\sqrt{{{\left( -24 \right)}^{2}}+{{56}^{2}}}=\sqrt{576+3136}=\sqrt{3712}=60\textrm{.}9\ \text{m}</math>

Current revision

We insert \displaystyle t=0\ \text{s} in the expression for the position vector to find the point where the frisby was thrown from.


\displaystyle \begin{align} & \mathbf{r}=\left( 5\times 0-{{0}^{2}} \right)\mathbf{i}+\left( 7\times 0 \right)\mathbf{j}+0\mathbf{k} \\ & \\ & =0\mathbf{i}+0\mathbf{j}+0\mathbf{k}\ \text{m}\\ \end{align}

Thus the point where the frisby was thrown from is the origin.

Using the result from part b)

\displaystyle \begin{align} & \mathbf{r}=-24\mathbf{i}+56\mathbf{j}+0\mathbf{k}\ \text{m} \end{align}

we get the distance from the origin to where it hits the ground is

\displaystyle \sqrt{{{\left( -24 \right)}^{2}}+{{56}^{2}}}=\sqrt{576+3136}=\sqrt{3712}=60\textrm{.}9\ \text{m}