Solution 6.8b
From Mechanics
(Difference between revisions)
(New page: We investigate the distance after <math>10\ \text{s}</math>.Using <math>s=ut+\frac{1}{2}a{{t}^{\ 2}}</math> gives <math>s=0+\frac{1}{2}\times \left( 0.075 \right)\times {{10}^{2}}</math>) |
|||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
- | We investigate the distance after <math>10\ \text{s}</math>. | + | We investigate the distance after <math>10\ \text{s}</math>. |
+ | Using <math>s=ut+\frac{1}{2}a{{t}^{\ 2}}</math> gives | ||
- | <math>s=0+\frac{1}{2}\times \left( 0.075 \right)\times {{10}^{2}}</math> | + | |
+ | <math>s=0+\frac{1}{2}\times \left( 0 \textrm{.}075 \right)\times {{10}^{2}}=3\textrm{.}75\ \text{m}</math> |
Current revision
We investigate the distance after \displaystyle 10\ \text{s}.
Using \displaystyle s=ut+\frac{1}{2}a{{t}^{\ 2}} gives
\displaystyle s=0+\frac{1}{2}\times \left( 0 \textrm{.}075 \right)\times {{10}^{2}}=3\textrm{.}75\ \text{m}