Solution 8.10b

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: We use the equation <math>\mathbf{v}=\mathbf{u}+\mathbf{a}t \ </math> where, <math>\mathbf{a}=(0\textrm{.}01\mathbf{i}+0\textrm{.}02\mathbf{j}+0\textrm{.}1\mathbf{k})\text{ m}{{\text{s}}...)
Line 8: Line 8:
<math>t=40 \ \text{s} </math>.
<math>t=40 \ \text{s} </math>.
 +
 +
giving,
 +
 +
<math>\mathbf{v}=8\ \mathbf{i}+8 \ \mathbf{ j}+((0\textrm{.}01\mathbf{i}+0\textrm{.}02\mathbf{j}+0\textrm{.}1\mathbf{k}))\times 40 =8\textrm{.}4\mathbf{i}+8\textrm{.}8\mathbf{j}+12\mathbf{k}</math>
 +
 +
This is the ''velocity'' of the aeroplane. The ''speed'' is the magnitude of the velocity.

Revision as of 10:16, 20 April 2010

We use the equation \displaystyle \mathbf{v}=\mathbf{u}+\mathbf{a}t \ where,

\displaystyle \mathbf{a}=(0\textrm{.}01\mathbf{i}+0\textrm{.}02\mathbf{j}+0\textrm{.}1\mathbf{k})\text{ m}{{\text{s}}^{\text{-2}}}

and from part a)

\displaystyle \mathbf{u}=8\ \mathbf{i}+8 \ \mathbf{ j}\text{ m}{{\text{s}}^{\text{-1}}} \ and

\displaystyle t=40 \ \text{s} .

giving,

\displaystyle \mathbf{v}=8\ \mathbf{i}+8 \ \mathbf{ j}+((0\textrm{.}01\mathbf{i}+0\textrm{.}02\mathbf{j}+0\textrm{.}1\mathbf{k}))\times 40 =8\textrm{.}4\mathbf{i}+8\textrm{.}8\mathbf{j}+12\mathbf{k}

This is the velocity of the aeroplane. The speed is the magnitude of the velocity.