Solution 8.7a

From Mechanics

(Difference between revisions)
Jump to: navigation, search
Current revision (12:14, 18 April 2010) (edit) (undo)
 
Line 3: Line 3:
We calculate the position vector using <math> \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} </math>.
We calculate the position vector using <math> \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} </math>.
-
Here <math>\mathbf{u}=8\mathbf{i}+10\mathbf{j}\text{ m}{{\text{s}}^{\text{-1}}}</math>, <math>\ \mathbf{a}=-10\mathbf{j}\ </math> and <math>\ \mathbf{r}_{0}=0</math> giving,
+
Here <math>\mathbf{u}=8\mathbf{i}+10\mathbf{j}\text{ m}{{\text{s}}^{\text{-1}}}</math>, <math>\ \mathbf{a}=-10\mathbf{j}\ \text{ m}{{\text{s}}^{\text{-2}}}</math> and <math>\ \mathbf{r}_{0}=0</math> giving,
<math> \mathbf{r}=(8\mathbf{i}+10\mathbf{j})t+\frac{1}{2}(-10\mathbf{j}){{t}^{\ 2}} </math>
<math> \mathbf{r}=(8\mathbf{i}+10\mathbf{j})t+\frac{1}{2}(-10\mathbf{j}){{t}^{\ 2}} </math>

Current revision

The ball hits the ground when the \displaystyle \mathbf{j} component of the position vector is zero.

We calculate the position vector using \displaystyle \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} .

Here \displaystyle \mathbf{u}=8\mathbf{i}+10\mathbf{j}\text{ m}{{\text{s}}^{\text{-1}}}, \displaystyle \ \mathbf{a}=-10\mathbf{j}\ \text{ m}{{\text{s}}^{\text{-2}}} and \displaystyle \ \mathbf{r}_{0}=0 giving,

\displaystyle \mathbf{r}=(8\mathbf{i}+10\mathbf{j})t+\frac{1}{2}(-10\mathbf{j}){{t}^{\ 2}}

The \displaystyle \mathbf{j} component of this position vector is \displaystyle 10t-5{{t}^{\ 2}}.

This is zero if \displaystyle t=2\ \text{s}.

The other solution \displaystyle t=0 is the trivial solution restating the fact that the ball is at the origin at the start.