Solution 8.6b
From Mechanics
Line 1: | Line 1: | ||
- | We | + | We assume the starting point is the origin. This means <math>{{\mathbf{r}}_{0}}=0</math> |
The boat first accelerates to a point <math>A</math> say. We first must calculate the position of this point <math>{{\mathbf{r}}_{A}}</math>. | The boat first accelerates to a point <math>A</math> say. We first must calculate the position of this point <math>{{\mathbf{r}}_{A}}</math>. | ||
Line 8: | Line 8: | ||
<math>\mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j}\ \text{m}{{\text{s}}^{-2}}</math> | <math>\mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j}\ \text{m}{{\text{s}}^{-2}}</math> | ||
- | <math>{{\mathbf{r}}_{A}}=(\mathbf{i}+2\mathbf{j}) \times 10+\frac{1}{2}(0\textrm{.}5\mathbf{i}-\mathbf{j}) \times {{10}^{\ 2}}+0=35\mathbf{i} | + | <math>{{\mathbf{r}}_{A}}=(\mathbf{i}+2\mathbf{j}) \times 10+\frac{1}{2}(0\textrm{.}5\mathbf{i}-\mathbf{j}) \times {{10}^{\ 2}}+0=35\mathbf{i}-50\mathbf{j}</math> |
The next stage has | The next stage has | ||
Line 16: | Line 16: | ||
Using once again <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> we get | Using once again <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> we get | ||
- | <math>\mathbf{r}=(6\mathbf{i}-8\mathbf{j}) \times 40+35\mathbf{i} | + | <math>\mathbf{r}=(6\mathbf{i}-8\mathbf{j}) \times 40+0+(35\mathbf{i}-50\mathbf{j})=275\mathbf{i}-355\mathbf{j}</math> |
+ | |||
+ | This is the boat´s final position. | ||
+ | |||
+ | The distance from the starting point is the magnitude of this vector, | ||
+ | |||
+ | |||
+ | <math>\sqrt{{{275}^{2}}+{{\left( -355 \right)}^{2}}}=450\ \text{m}</math> |
Revision as of 19:42, 15 April 2010
We assume the starting point is the origin. This means \displaystyle {{\mathbf{r}}_{0}}=0
The boat first accelerates to a point \displaystyle A say. We first must calculate the position of this point \displaystyle {{\mathbf{r}}_{A}}.
Using \displaystyle \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} with,
\displaystyle t=10, \displaystyle \mathbf{u}=\mathbf{i}+2\mathbf{j} and from part a) \displaystyle \mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j}\ \text{m}{{\text{s}}^{-2}}
\displaystyle {{\mathbf{r}}_{A}}=(\mathbf{i}+2\mathbf{j}) \times 10+\frac{1}{2}(0\textrm{.}5\mathbf{i}-\mathbf{j}) \times {{10}^{\ 2}}+0=35\mathbf{i}-50\mathbf{j}
The next stage has
\displaystyle t=40, \displaystyle \mathbf{a}=0, \displaystyle {{\mathbf{r}}_{0}}=35\mathbf{i}+70\mathbf{j}, and \displaystyle \mathbf{u}=6\mathbf{i}-8\mathbf{j} as the final position and velocity of the first stage is the initial position and velocity of the second stage.
Using once again \displaystyle \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} we get
\displaystyle \mathbf{r}=(6\mathbf{i}-8\mathbf{j}) \times 40+0+(35\mathbf{i}-50\mathbf{j})=275\mathbf{i}-355\mathbf{j}
This is the boat´s final position.
The distance from the starting point is the magnitude of this vector,
\displaystyle \sqrt{{{275}^{2}}+{{\left( -355 \right)}^{2}}}=450\ \text{m}