Solution 8.6b

From Mechanics

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
We aassume the starting point is the origin. This means <math>{{\mathbf{r}}_{0}}=0</math>
We aassume the starting point is the origin. This means <math>{{\mathbf{r}}_{0}}=0</math>
-
The boat first accelerates to a point <math>A</math> say. We first must calculate the position of this point <math></math>.
+
The boat first accelerates to a point <math>A</math> say. We first must calculate the position of this point <math>{{\mathbf{r}}_{A}}</math>.
Using <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> with,
Using <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> with,
<math>t=10</math>, <math>\mathbf{u}=\mathbf{i}+2\mathbf{j}</math> and from part a)
<math>t=10</math>, <math>\mathbf{u}=\mathbf{i}+2\mathbf{j}</math> and from part a)
- 
<math>\mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j}\ \text{m}{{\text{s}}^{-2}}</math>
<math>\mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j}\ \text{m}{{\text{s}}^{-2}}</math>
-
Using <math>{{\mathbf{r}}_{A}}=(\mathbf{i}+2\mathbf{j}) \times 10+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math
+
<math>{{\mathbf{r}}_{A}}=(\mathbf{i}+2\mathbf{j}) \times 10+\frac{1}{2}(0\textrm{.}5\mathbf{i}-\mathbf{j}) \times {{10}^{\ 2}}+0</math

Revision as of 18:19, 15 April 2010

We aassume the starting point is the origin. This means \displaystyle {{\mathbf{r}}_{0}}=0

The boat first accelerates to a point \displaystyle A say. We first must calculate the position of this point \displaystyle {{\mathbf{r}}_{A}}.

Using \displaystyle \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} with,

\displaystyle t=10, \displaystyle \mathbf{u}=\mathbf{i}+2\mathbf{j} and from part a) \displaystyle \mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j}\ \text{m}{{\text{s}}^{-2}}

\displaystyle {{\mathbf{r}}_{A}}=(\mathbf{i}+2\mathbf{j}) \times 10+\frac{1}{2}(0\textrm{.}5\mathbf{i}-\mathbf{j}) \times {{10}^{\ 2}}+0