Solution 8.5a

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: We assume the origin is att the point of tacke off which means <math>\ \ \mathbf{ r}_{0}=0</math>. Also we have <math>\mathbf{a}=\mathbf{i}+4\mathbf{j},\ \</math> <math>\mathbf{u}=80\ma...)
Current revision (15:02, 14 April 2010) (edit) (undo)
 
(One intermediate revision not shown.)
Line 8: Line 8:
<math>\mathbf{v}=(80+t\ )\mathbf{i}+4t\ \mathbf{j}</math>
<math>\mathbf{v}=(80+t\ )\mathbf{i}+4t\ \mathbf{j}</math>
 +
 +
 +
Using <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> gives at time <math>t</math>,
 +
 +
<math>\mathbf{r}=80\mathbf{i}t+\frac{1}{2}(\mathbf{i}+4\mathbf{j}){t}^{\ 2}</math>
 +
 +
<math>\mathbf{r}=(80t+\frac{1}{2}{t}^{\ 2}\ )\mathbf{i}+2{t}^{\ 2}\ \mathbf{j}</math>

Current revision

We assume the origin is att the point of tacke off which means \displaystyle \ \ \mathbf{ r}_{0}=0.

Also we have \displaystyle \mathbf{a}=\mathbf{i}+4\mathbf{j},\ \ \displaystyle \mathbf{u}=80\mathbf{i}\ \.

Using \displaystyle \mathbf{v}=\mathbf{u}+\mathbf{a}t\ \ gives at time \displaystyle t,

\displaystyle \mathbf{v}=80\mathbf{i}+(\mathbf{i}+4\mathbf{j})t\ \ or

\displaystyle \mathbf{v}=(80+t\ )\mathbf{i}+4t\ \mathbf{j}


Using \displaystyle \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} gives at time \displaystyle t,

\displaystyle \mathbf{r}=80\mathbf{i}t+\frac{1}{2}(\mathbf{i}+4\mathbf{j}){t}^{\ 2}

\displaystyle \mathbf{r}=(80t+\frac{1}{2}{t}^{\ 2}\ )\mathbf{i}+2{t}^{\ 2}\ \mathbf{j}