Solution 8.3

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: In this case we have <math>\mathbf{u}=0</math> , <math>\mathbf{a}=2\mathbf{i}+3\mathbf{j}</math> and <math>{{\mathbf{r}}_{0}}=0</math>. Substituting these into the equation <math>\math...)
Current revision (15:25, 13 April 2010) (edit) (undo)
 
Line 8: Line 8:
Substituting these into the equation
Substituting these into the equation
<math>\mathbf{v}=\mathbf{u}+\mathbf{a}t \ \</math>
<math>\mathbf{v}=\mathbf{u}+\mathbf{a}t \ \</math>
-
gives the velocity of the ball at time <math>t=4 \text{ s }</math> as:
+
gives the velocity of the body at time <math>t=4 \text{ s }</math> as:
Line 16: Line 16:
<math>\mathbf{v}=8\mathbf{i}+12\mathbf{j} \ \text{ m}{{\text{s}}^{\text{-1}}}</math>
<math>\mathbf{v}=8\mathbf{i}+12\mathbf{j} \ \text{ m}{{\text{s}}^{\text{-1}}}</math>
 +
 +
Then substituting the above into the equation
 +
<math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math>
 +
gives the position vector of the body at time <math>t=4 \text{ s }</math> as:
 +
 +
<math>\begin{align}
 +
& \mathbf{r}=0\times 4+\frac{1}{2}(2\mathbf{i}+3\mathbf{j})\times {{4}^{\ 2}}+0 \\
 +
& =16\mathbf{i}+24\mathbf{j} \ \text{m}
 +
\end{align}</math>

Current revision

In this case we have \displaystyle \mathbf{u}=0 , \displaystyle \mathbf{a}=2\mathbf{i}+3\mathbf{j} and \displaystyle {{\mathbf{r}}_{0}}=0.

Substituting these into the equation \displaystyle \mathbf{v}=\mathbf{u}+\mathbf{a}t \ \ gives the velocity of the body at time \displaystyle t=4 \text{ s } as:


\displaystyle \mathbf{v}=0+(2\mathbf{i}+3\mathbf{j})\times 4

which gives

\displaystyle \mathbf{v}=8\mathbf{i}+12\mathbf{j} \ \text{ m}{{\text{s}}^{\text{-1}}}

Then substituting the above into the equation \displaystyle \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} gives the position vector of the body at time \displaystyle t=4 \text{ s } as:

\displaystyle \begin{align} & \mathbf{r}=0\times 4+\frac{1}{2}(2\mathbf{i}+3\mathbf{j})\times {{4}^{\ 2}}+0 \\ & =16\mathbf{i}+24\mathbf{j} \ \text{m} \end{align}