Solution 8.1b
From Mechanics
(Difference between revisions)
(New page: In this case we have <math>\mathbf{u}=4\mathbf{i}</math> , <math>\mathbf{a}=0\textrm{.}9\mathbf{i}+0\textrm{.}7\mathbf{j}</math> and <math>{{\mathbf{r}}_{0}}=400\mathbf{i}+350\mathbf{j}...) |
|||
Line 7: | Line 7: | ||
Substituting these into the equation | Substituting these into the equation | ||
- | <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+ | + | <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> |
gives the position vector of the ball at time <math>t=10 \text{ s }</math> as: | gives the position vector of the ball at time <math>t=10 \text{ s }</math> as: | ||
Revision as of 14:50, 13 April 2010
In this case we have \displaystyle \mathbf{u}=4\mathbf{i} , \displaystyle \mathbf{a}=0\textrm{.}9\mathbf{i}+0\textrm{.}7\mathbf{j} and \displaystyle {{\mathbf{r}}_{0}}=400\mathbf{i}+350\mathbf{j}.
Substituting these into the equation \displaystyle \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} gives the position vector of the ball at time \displaystyle t=10 \text{ s } as:
\displaystyle \begin{align} & \mathbf{r}=(4\mathbf{i})\times 10+\frac{1}{2}(0\textrm{.}9\mathbf{i}+0\textrm{.}7\mathbf{j})\times {{10}^{\ 2}}+400\mathbf{i}+350\mathbf{j} \\ & =40\mathbf{i}+45\mathbf{i}+35\mathbf{j}+400\mathbf{i}+350\mathbf{j} \\ \\ & =485\mathbf{i}+385\mathbf{j} \ \text{m} \end{align}