Solution 8.1a
From Mechanics
(Difference between revisions)
(Removing all content from page) |
|||
| Line 1: | Line 1: | ||
| - | In this case we have | ||
| - | <math>\mathbf{u}=4\mathbf{i}</math> | ||
| - | , | ||
| - | <math>\mathbf{a}=0.9\mathbf{i}+0.7\mathbf{j}</math> | ||
| - | and | ||
| - | <math>{{\mathbf{r}}_{0}}=400\mathbf{i}+350\mathbf{j}</math>. | ||
| - | Substituting these into the equation | ||
| - | <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+400\mathbf{i}+350\mathbf{j}</math> | ||
| - | gives the position vector of the ball at time <math>10</math> as: | ||
| - | |||
| - | <math>\begin{align} | ||
| - | & \mathbf{r}=(4\mathbf{i})\times 10+\frac{1}{2}(0.9\mathbf{i}+0.7\mathbf{j})\times {{10}^{\ 2}}+400\mathbf{i}+350\mathbf{j} \\ | ||
| - | & =40\mathbf{i}+45\mathbf{i}+35\mathbf{j}+400\mathbf{i}+350\mathbf{j} \\ \\ | ||
| - | & =485\mathbf{i}+385\mathbf{j} \ \text{m} | ||
| - | \end{align}</math> | ||
