7. Position Vectors

From Mechanics

(Difference between revisions)
Jump to: navigation, search
Current revision (12:17, 11 April 2010) (edit) (undo)
 
(4 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #797979" width="5px" |  
| style="border-bottom:1px solid #797979" width="5px" |  
-
{{Selected tab|[[5. Forces and equilibrium|Theory]]}}
+
{{Selected tab|[[7. Position Vectors|Theory]]}}
-
{{Not selected tab|[[5. Exercises|Exercises]]}}
+
{{Not selected tab|[[7. Exercises|Exercises]]}}
| style="border-bottom:1px solid #797979" width="100%"|  
| style="border-bottom:1px solid #797979" width="100%"|  
|}
|}
-
7. Position Vectors
+
== '''Key Points''' ==
-
Key Points
+
Velocities of particles can be expressed as vectors,
-
 
+
-
Velocities can be expressed as vectors, for example
+
<math>\mathbf{v}=V\cos \alpha \mathbf{i}+V\sin \alpha \mathbf{j}</math>
<math>\mathbf{v}=V\cos \alpha \mathbf{i}+V\sin \alpha \mathbf{j}</math>
-
 
+
A particle when moving with a constant velocity <math>\mathbf{u}</math> has a position vector,
-
When moving with a constant velocity
+
<math>\mathbf{r}=\mathbf{u}t+{{\mathbf{r}}_{0}}</math>
<math>\mathbf{r}=\mathbf{u}t+{{\mathbf{r}}_{0}}</math>
 +
 +
where <math>t</math> is the time and <math>{{\mathbf{r}}_{0}}</math> is the position vector of the particle at the start.
 +
 +
If
 +
<math>\mathbf{u}=b\mathbf{i}+c\mathbf{j}</math>
 +
 +
and
 +
 +
<math>{{\mathbf{r}}_{0}}=p\mathbf{i}+q\mathbf{j}</math>
 +
 +
where <math>b, c, p, q</math> are numbers,
 +
 +
then this equation may be rewritten as
 +
 +
<math>\mathbf{r}=\left( bt+p \right)\mathbf{i}+\left( ct+q \right)\mathbf{j}</math>
 +
 +
This is another way of writing the equation for a particle with constant velocity.
 +
'''[[Example 7.1]]'''
'''[[Example 7.1]]'''
-
Two children, A and B, start at the origin and run so that their position vectors in metres at time t seconds are given by:
+
 
 +
Two children, A and B, start at the origin and run so that their position vectors in metres at time <math>t</math> seconds are given by:
-
 
<math>{{\mathbf{r}}_{A}}=2t\mathbf{i}+t\mathbf{j}</math>
<math>{{\mathbf{r}}_{A}}=2t\mathbf{i}+t\mathbf{j}</math>
and
and
<math>{{\mathbf{r}}_{B}}=(6t-{{t}^{2}})\mathbf{i}+t\mathbf{j}</math>
<math>{{\mathbf{r}}_{B}}=(6t-{{t}^{2}})\mathbf{i}+t\mathbf{j}</math>
- 
Plot the paths of the two children for
Plot the paths of the two children for
Line 39: Line 53:
'''Solution'''
'''Solution'''
-
The tables below show the positions of the children at 1 second intervals for
+
 
 +
The tables below show the positions in metres of the children at 1 second intervals for
<math>0\le t\le 4</math>
<math>0\le t\le 4</math>
.
.
Line 77: Line 92:
'''[[Example 7.2]]'''
'''[[Example 7.2]]'''
 +
A boat moves so that at time t its position vector is r, where
A boat moves so that at time t its position vector is r, where
<math>\mathbf{r}=(9t-180)\mathbf{i}+(5t-450)\mathbf{j}</math>
<math>\mathbf{r}=(9t-180)\mathbf{i}+(5t-450)\mathbf{j}</math>
-
and i and j are unit vectors directed due east and north respectively.
+
and <math>\mathbf{i}</math> and <math>\mathbf{j}</math> are unit vectors directed due east and north respectively.
-
(a) Find the time when the boat is due east of the origin.
+
a) Find the time when the boat is due east of the origin.
-
(b) Find the time when it is due south of the origin.
+
 
-
(c) Find the position of the boat when it is south east of the origin.
+
b) Find the time when it is due south of the origin.
 +
 
 +
c) Find the position of the boat when it is south east of the origin.
'''Solution'''
'''Solution'''
-
(a) When the boat is due east of the origin the position vector will contain only
+
 
 +
a) When the boat is due east of the origin the position vector will contain only
<math>\mathbf{i}</math>
<math>\mathbf{i}</math>
terms and no
terms and no
<math>\mathbf{j}</math>
<math>\mathbf{j}</math>
terms.
terms.
-
 
+
-
+
<math>\begin{align}
<math>\begin{align}
& 5t-450=0 \\
& 5t-450=0 \\
Line 100: Line 118:
\end{align}</math>
\end{align}</math>
-
 
+
b) When the boat is due south of the origin the position vector will contain only
-
(b) When the boat is due south of the origin the position vector will contain only
+
<math>\mathbf{j}</math>
<math>\mathbf{j}</math>
terms and no
terms and no
<math>\mathbf{i}</math>
<math>\mathbf{i}</math>
terms.
terms.
- 
<math>\begin{align}
<math>\begin{align}
Line 113: Line 129:
\end{align}</math>
\end{align}</math>
-
 
+
c) When the boat is south east of the origin, its position vector will be of the form
-
(c) When the boat is south east of the origin, its position vector will be of the form
+
<math>k\mathbf{i}-k\mathbf{j}</math>
<math>k\mathbf{i}-k\mathbf{j}</math>
.
.
-
 
+
-
+
<math>\begin{align}
<math>\begin{align}
& -(9t-180)=5t-450 \\
& -(9t-180)=5t-450 \\

Current revision

       Theory          Exercises      


Key Points

Velocities of particles can be expressed as vectors,

\displaystyle \mathbf{v}=V\cos \alpha \mathbf{i}+V\sin \alpha \mathbf{j}

A particle when moving with a constant velocity \displaystyle \mathbf{u} has a position vector,

\displaystyle \mathbf{r}=\mathbf{u}t+{{\mathbf{r}}_{0}}

where \displaystyle t is the time and \displaystyle {{\mathbf{r}}_{0}} is the position vector of the particle at the start.

If \displaystyle \mathbf{u}=b\mathbf{i}+c\mathbf{j}

and

\displaystyle {{\mathbf{r}}_{0}}=p\mathbf{i}+q\mathbf{j}

where \displaystyle b, c, p, q are numbers,

then this equation may be rewritten as

\displaystyle \mathbf{r}=\left( bt+p \right)\mathbf{i}+\left( ct+q \right)\mathbf{j}

This is another way of writing the equation for a particle with constant velocity.



Example 7.1

Two children, A and B, start at the origin and run so that their position vectors in metres at time \displaystyle t seconds are given by:

\displaystyle {{\mathbf{r}}_{A}}=2t\mathbf{i}+t\mathbf{j} and \displaystyle {{\mathbf{r}}_{B}}=(6t-{{t}^{2}})\mathbf{i}+t\mathbf{j}

Plot the paths of the two children for \displaystyle 0\le t\le 4 . What happens when \displaystyle t=4 ?

Solution

The tables below show the positions in metres of the children at 1 second intervals for \displaystyle 0\le t\le 4 .

Time Position of A (\displaystyle {{\mathbf{r}}_{A}}) Position of B (\displaystyle {{\mathbf{r}}_{B}})
0 \displaystyle {{\mathbf{r}}_{A}}=0\mathbf{i}+0\mathbf{j} \displaystyle {{\mathbf{r}}_{B}}=(6\times 0-{{0}^{2}})\mathbf{i}+0\mathbf{j}=0\mathbf{i}+0\mathbf{j}
1 \displaystyle {{\mathbf{r}}_{A}}=2\mathbf{i}+1\mathbf{j} \displaystyle {{\mathbf{r}}_{B}}=(6\times 1-{{1}^{2}})\mathbf{i}+1\mathbf{j}=5\mathbf{i}+1\mathbf{j}
2 \displaystyle {{\mathbf{r}}_{A}}=4\mathbf{i}+2\mathbf{j} \displaystyle {{\mathbf{r}}_{B}}=(6\times 2-{{2}^{2}})\mathbf{i}+2\mathbf{j}=8\mathbf{i}+2\mathbf{j}
3 \displaystyle {{\mathbf{r}}_{A}}=6\mathbf{i}+3\mathbf{j} \displaystyle {{\mathbf{r}}_{B}}=(6\times 3-{{3}^{2}})\mathbf{i}+3\mathbf{j}=9\mathbf{i}+3\mathbf{j}
4 \displaystyle {{\mathbf{r}}_{A}}=8\mathbf{i}+4\mathbf{j} \displaystyle {{\mathbf{r}}_{B}}=(6\times 4-{{4}^{2}})\mathbf{i}+4\mathbf{j}=8\mathbf{i}+4\mathbf{j}


From the values that we have obtained it is clear that the two children will have the same position when \displaystyle t=4 and unless they take evasive action will collide. The paths are shown in the diagram below.

Image:TF7.1.GIF


Example 7.2

A boat moves so that at time t its position vector is r, where

\displaystyle \mathbf{r}=(9t-180)\mathbf{i}+(5t-450)\mathbf{j}

and \displaystyle \mathbf{i} and \displaystyle \mathbf{j} are unit vectors directed due east and north respectively.

a) Find the time when the boat is due east of the origin.

b) Find the time when it is due south of the origin.

c) Find the position of the boat when it is south east of the origin.

Solution

a) When the boat is due east of the origin the position vector will contain only \displaystyle \mathbf{i} terms and no \displaystyle \mathbf{j} terms.

\displaystyle \begin{align} & 5t-450=0 \\ & t=\frac{450}{5}=90\text{ s} \\ \end{align}

b) When the boat is due south of the origin the position vector will contain only \displaystyle \mathbf{j} terms and no \displaystyle \mathbf{i} terms.

\displaystyle \begin{align} & 9t-180=0 \\ & t=\frac{180}{9}=20\text{ s} \\ \end{align}

c) When the boat is south east of the origin, its position vector will be of the form \displaystyle k\mathbf{i}-k\mathbf{j} .

\displaystyle \begin{align} & -(9t-180)=5t-450 \\ & -9t+180=5t-450 \\ & 630=14t \\ & t=\frac{630}{14}=45\text{ s} \\ \end{align}