Solution 7.1a

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: <math>t=0\ \</math> gives <math>\mathbf{r}=6\times 0\mathbf{i}+\left( 15\times 0-4.9\times {{0}^{2}} \right)\mathbf{j}=0\mathbf{i}+0\mathbf{j}\ \text{m}</math> <math>t=1\ \</math> gives...)
Current revision (10:29, 11 April 2010) (edit) (undo)
 
Line 1: Line 1:
<math>t=0\ \</math> gives
<math>t=0\ \</math> gives
-
<math>\mathbf{r}=6\times 0\mathbf{i}+\left( 15\times 0-4.9\times {{0}^{2}} \right)\mathbf{j}=0\mathbf{i}+0\mathbf{j}\ \text{m}</math>
+
<math>\mathbf{r}=6\times 0\mathbf{i}+\left( 15\times 0-4\textrm{.}9\times {{0}^{2}} \right)\mathbf{j}=0\mathbf{i}+0\mathbf{j}\ \text{m}</math>
<math>t=1\ \</math> gives
<math>t=1\ \</math> gives
-
<math>\mathbf{r}=6\times 1\mathbf{i}+\left( 15\times 1-4.9\times {{1}^{2}} \right)\mathbf{j}=6\mathbf{i}+10.1\mathbf{j}\ \text{m}</math>
+
<math>\mathbf{r}=6\times 1\mathbf{i}+\left( 15\times 1-4\textrm{.}9\times {{1}^{2}} \right)\mathbf{j}=6\mathbf{i}+10\textrm{.}1\mathbf{j}\ \text{m}</math>
<math>t=2\ \</math> gives
<math>t=2\ \</math> gives
-
<math>\mathbf{r}=6\times 2\mathbf{i}+\left( 15\times 2-4.9\times {{2}^{2}} \right)\mathbf{j}=12\mathbf{i}+10.4\mathbf{j}\ \text{m}</math>
+
<math>\mathbf{r}=6\times 2\mathbf{i}+\left( 15\times 2-4\textrm{.}9\times {{2}^{2}} \right)\mathbf{j}=12\mathbf{i}+10\textrm{.}4\mathbf{j}\ \text{m}</math>
 +
 
 +
 
 +
<math>t=3\ \</math> gives
 +
 
 +
<math>\mathbf{r}=6\times 3\mathbf{i}+\left( 15\times 3-4\textrm{.}9\times {{3}^{2}} \right)\mathbf{j}=18\mathbf{i}+0\textrm{.}9\mathbf{j}\ \text{m}</math>
 +
 
 +
 
 +
<math>t=4\ \</math> gives
 +
 
 +
<math>\mathbf{r}=6\times 4\mathbf{i}+\left( 15\times 4-4\textrm{.}9\times {{4}^{2}} \right)\mathbf{j}=24\mathbf{i}-18\textrm{.}4\mathbf{j}\ \text{m}</math>

Current revision

\displaystyle t=0\ \ gives

\displaystyle \mathbf{r}=6\times 0\mathbf{i}+\left( 15\times 0-4\textrm{.}9\times {{0}^{2}} \right)\mathbf{j}=0\mathbf{i}+0\mathbf{j}\ \text{m}


\displaystyle t=1\ \ gives

\displaystyle \mathbf{r}=6\times 1\mathbf{i}+\left( 15\times 1-4\textrm{.}9\times {{1}^{2}} \right)\mathbf{j}=6\mathbf{i}+10\textrm{.}1\mathbf{j}\ \text{m}

\displaystyle t=2\ \ gives

\displaystyle \mathbf{r}=6\times 2\mathbf{i}+\left( 15\times 2-4\textrm{.}9\times {{2}^{2}} \right)\mathbf{j}=12\mathbf{i}+10\textrm{.}4\mathbf{j}\ \text{m}


\displaystyle t=3\ \ gives

\displaystyle \mathbf{r}=6\times 3\mathbf{i}+\left( 15\times 3-4\textrm{.}9\times {{3}^{2}} \right)\mathbf{j}=18\mathbf{i}+0\textrm{.}9\mathbf{j}\ \text{m}


\displaystyle t=4\ \ gives

\displaystyle \mathbf{r}=6\times 4\mathbf{i}+\left( 15\times 4-4\textrm{.}9\times {{4}^{2}} \right)\mathbf{j}=24\mathbf{i}-18\textrm{.}4\mathbf{j}\ \text{m}