1.2 Übungen
Aus Online Mathematik Brückenkurs 2
Theorie | Übungen |
Übung 1.2:1
Berechne die Ableitung von folgenden Funktionen und vereinfache sie so weit wie möglich.
a) | \displaystyle \cos x \cdot \sin x | b) | \displaystyle x^2\ln x | c) | \displaystyle \displaystyle\frac{x^2+1}{x+1} |
d) | \displaystyle \displaystyle\frac{\sin x}{x} | e) | \displaystyle \displaystyle\frac{x}{\ln x} | f) | \displaystyle \displaystyle\frac{x \ln x}{\sin x} |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Lösung e
Lösung f
Übung 1.2:2
Berechne die Ableitung von folgenden Funktionen und vereinfache sie so weit wie möglich.
a) | \displaystyle \sin x^2 | b) | \displaystyle e^{x^2+x} | c) | \displaystyle \sqrt{\cos x} |
d) | \displaystyle \ln \ln x | e) | \displaystyle x(2x+1)^4 | f) | \displaystyle \cos \sqrt{1-x} |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Lösung e
Lösung f
Übung 1.2:3
Berechne die Ableitung von folgenden Funktionen und vereinfache sie so weit wie möglich.
a) | \displaystyle \ln (\sqrt{x} + \sqrt{x+1}\,) | b) | \displaystyle \sqrt{\displaystyle \frac{x+1}{x-1}} | c) | \displaystyle \displaystyle\frac{1}{x\sqrt{1-x^2}} |
d) | \displaystyle \sin \cos \sin x | e) | \displaystyle e^{\sin x^2} | f) | \displaystyle x^{\tan x} |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Lösung e
Lösung f
Übung 1.2:4
Berechne die zweite Ableitung von folgenden Funktionen und vereinfache sie so weit wie möglich.
a) | \displaystyle \displaystyle\frac{x}{\sqrt{1-x^2}} | b) | \displaystyle x ( \sin \ln x +\cos \ln x ) |