1.1 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-Answer +Antwort)) |
K (Robot: Automated text replacement (-Solution +Lösung)) |
||
Zeile 26: | Zeile 26: | ||
||{{:1.1 - Figure - The graph of f(x) in exercise 1.1:1}} | ||{{:1.1 - Figure - The graph of f(x) in exercise 1.1:1}} | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:1| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:1|Lösung a|Lösung 1.1:1a|Lösung b|Lösung 1.1:1b|Lösung c|Lösung 1.1:1c}} |
===Übung 1.1:2=== | ===Übung 1.1:2=== | ||
Zeile 46: | Zeile 46: | ||
|width="33%"| <math>f(x)= \cos (x+\pi/3)</math> | |width="33%"| <math>f(x)= \cos (x+\pi/3)</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:2| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:2|Lösung a|Lösung 1.1:2a|Lösung b|Lösung 1.1:2b|Lösung c|Lösung 1.1:2c|Lösung d|Lösung 1.1:2d|Lösung e|Lösung 1.1:2e|Lösung f|Lösung 1.1:2f}} |
===Übung 1.1:3=== | ===Übung 1.1:3=== | ||
Zeile 52: | Zeile 52: | ||
A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds? | A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds? | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:3| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:3|Lösung |Lösung 1.1:3}} |
===Übung 1.1:4=== | ===Übung 1.1:4=== | ||
Zeile 58: | Zeile 58: | ||
Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>. | Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>. | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:4| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:4|Lösung |Lösung 1.1:4}} |
===Übung 1.1:5=== | ===Übung 1.1:5=== | ||
Zeile 64: | Zeile 64: | ||
Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>. | Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>. | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:5| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:5|Lösung |Lösung 1.1:5}} |
Version vom 13:33, 10. Mär. 2009
Theorie | Übungen |
Übung 1.1:1
The graph for \displaystyle f(x) is shown in the figure.
(Each square in the grid of the figure has width and height 1.) | 1.1 - Figure - The graph of f(x) in exercise 1.1:1 |
Übung 1.1:2
Determine the derivative \displaystyle f^{\,\prime}(x) when
a) | \displaystyle f(x) = x^2 -3x +1 | b) | \displaystyle f(x)=\cos x -\sin x | c) | \displaystyle f(x)= e^x-\ln x |
d) | \displaystyle f(x)=\sqrt{x} | e) | \displaystyle f(x) = (x^2-1)^2 | f) | \displaystyle f(x)= \cos (x+\pi/3) |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Lösung e
Lösung f
Übung 1.1:3
A small ball, that is released from a height of \displaystyle h=10m above the ground at time \displaystyle t=0, is at a height \displaystyle h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2 at time \displaystyle t (measured in seconds) What is the speed of the ball when it hits the grounds?
Antwort
Lösung
Übung 1.1:4
Determine the equation for the tangent and normal to the curve \displaystyle y=x^2 at the point \displaystyle (1,1).
Antwort
Lösung
Übung 1.1:5
Determine all the points on the curve \displaystyle y=-x^2 which have a tangent that goes through the point \displaystyle (1,1).
Antwort
Lösung