1.1 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-Selected tab +Gewählter Tab)) |
K (Robot: Automated text replacement (-Not selected tab +Nicht gewählter Tab)) |
||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Nicht gewählter Tab|[[1.1 Einführung zur Differentialrechnung|Theorie]]}} |
{{Gewählter Tab|[[1.1 Übungen|Übungen]]}} | {{Gewählter Tab|[[1.1 Übungen|Übungen]]}} | ||
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| |
Version vom 13:41, 10. Mär. 2009
Theorie | Übungen |
Übung 1.1:1
The graph for \displaystyle f(x) is shown in the figure.
(Each square in the grid of the figure has width and height 1.) | 1.1 - Figure - The graph of f(x) in exercise 1.1:1 |
Übung 1.1:2
Determine the derivative \displaystyle f^{\,\prime}(x) when
a) | \displaystyle f(x) = x^2 -3x +1 | b) | \displaystyle f(x)=\cos x -\sin x | c) | \displaystyle f(x)= e^x-\ln x |
d) | \displaystyle f(x)=\sqrt{x} | e) | \displaystyle f(x) = (x^2-1)^2 | f) | \displaystyle f(x)= \cos (x+\pi/3) |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Lösung e
Lösung f
Übung 1.1:3
A small ball, that is released from a height of \displaystyle h=10m above the ground at time \displaystyle t=0, is at a height \displaystyle h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2 at time \displaystyle t (measured in seconds) What is the speed of the ball when it hits the grounds?
Antwort
Lösung
Übung 1.1:4
Determine the equation for the tangent and normal to the curve \displaystyle y=x^2 at the point \displaystyle (1,1).
Antwort
Lösung
Übung 1.1:5
Determine all the points on the curve \displaystyle y=-x^2 which have a tangent that goes through the point \displaystyle (1,1).
Antwort
Lösung