1.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Added reference to the tests at the bottom of the page)
(Übung 1.1:1 - nur sprachliches)
Zeile 11: Zeile 11:
{| width="100%"
{| width="100%"
| width="95%" |
| width="95%" |
-
Der Graph von <math>f(x)</math> ist nebenstehend abgebildet.
+
Der Graph von <math>f</math> ist nebenstehend abgebildet.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
| valign="top" |a)
| valign="top" |a)
-
| width="100%" | Welches Vorzeichen hat <math>f^{\,\prime}(-5)</math> und <math>f^{\,\prime}(1)</math>?
+
| width="100%" | Welche Vorzeichen haben <math>f^{\,\prime}(-5)</math> und <math>f^{\,\prime}(1)</math>?
|-
|-
| valign="top" |b)
| valign="top" |b)
Zeile 20: Zeile 20:
|-
|-
| valign="top" |c)
| valign="top" |c)
-
|width="100%"| In welchem Intervall(en) ist <math>f^{\,\prime}(x)</math> negativ?
+
|width="100%"| In welchem Intervall bzw. in welchen Intervallen ist <math>f^{\,\prime}(x)</math> negativ?
|}
|}
(Jedes Kästchen entspricht der Länge 1.)
(Jedes Kästchen entspricht der Länge 1.)
| width="5%" |
| width="5%" |
-
||{{:1.1 - Bild - Die Kurve von f(x) in Übung 1.1:1}}
+
||{{:1.1 - Bild - Der Graph von f in Übung 1.1:1}}
|}
|}
</div>{{#NAVCONTENT:Antwort|Antwort 1.1:1|Lösung a|Lösung 1.1:1a|Lösung b|Lösung 1.1:1b|Lösung c|Lösung 1.1:1c}}
</div>{{#NAVCONTENT:Antwort|Antwort 1.1:1|Lösung a|Lösung 1.1:1a|Lösung b|Lösung 1.1:1b|Lösung c|Lösung 1.1:1c}}

Version vom 14:36, 4. Sep. 2009

       Theorie          Übungen      

Übung 1.1:1

Der Graph von \displaystyle f ist nebenstehend abgebildet.

a) Welche Vorzeichen haben \displaystyle f^{\,\prime}(-5) und \displaystyle f^{\,\prime}(1)?
b) Für welche \displaystyle x ist \displaystyle f^{\,\prime}(x)=0?
c) In welchem Intervall bzw. in welchen Intervallen ist \displaystyle f^{\,\prime}(x) negativ?

(Jedes Kästchen entspricht der Länge 1.)

1.1 - Bild - Der Graph von f in Übung 1.1:1

Übung 1.1:2

Bestimme die Ableitung \displaystyle f^{\,\prime}(x) für

a) \displaystyle f(x) = x^2 -3x +1 b) \displaystyle f(x)=\cos x -\sin x c) \displaystyle f(x)= e^x-\ln x
d) \displaystyle f(x)=\sqrt{x} e) \displaystyle f(x) = (x^2-1)^2 f) \displaystyle f(x)= \cos (x+\pi/3)

Übung 1.1:3

Ein Ball wird aus der Höhe \displaystyle h=10m zur Zeit \displaystyle t=0 fallengelassen. Die Höhe des Balles zur Zeit \displaystyle t ist \displaystyle h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2. Welche Geschwindigkeit hat der Ball, wenn er auf den Boden fällt?

Übung 1.1:4

Bestimme die Tangente und die Normale zur Kurve \displaystyle y=x^2 im Punkt \displaystyle (1,1).

Übung 1.1:5

Bestimme alle Punkte auf der Kurve \displaystyle y=-x^2, die eine Tangente haben, die durch den Punkt \displaystyle (1,1) geht.


Diagnostische Prüfung und Schlussprüfung

Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in Deiner Student Lounge.