1.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Solution +Lösung))
K (Robot: Automated text replacement (-Selected tab +Gewählter Tab))
Zeile 3: Zeile 3:
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
{{Not selected tab|[[1.1 Einführung zur Differentialrechnung|Theorie]]}}
{{Not selected tab|[[1.1 Einführung zur Differentialrechnung|Theorie]]}}
-
{{Selected tab|[[1.1 Übungen|Übungen]]}}
+
{{Gewählter Tab|[[1.1 Übungen|Übungen]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}

Version vom 13:37, 10. Mär. 2009

       Theorie          Übungen      

Übung 1.1:1

The graph for \displaystyle f(x) is shown in the figure.

a) What are the signs of \displaystyle f^{\,\prime}(-4) and \displaystyle f^{\,\prime}(1)?
b) For what values of \displaystyle x is \displaystyle f^{\,\prime}(x)=0?
c) In which interval(s) is \displaystyle f^{\,\prime}(x) negative?

(Each square in the grid of the figure has width and height 1.)

1.1 - Figure - The graph of f(x) in exercise 1.1:1

Übung 1.1:2

Determine the derivative \displaystyle f^{\,\prime}(x) when

a) \displaystyle f(x) = x^2 -3x +1 b) \displaystyle f(x)=\cos x -\sin x c) \displaystyle f(x)= e^x-\ln x
d) \displaystyle f(x)=\sqrt{x} e) \displaystyle f(x) = (x^2-1)^2 f) \displaystyle f(x)= \cos (x+\pi/3)

Übung 1.1:3

A small ball, that is released from a height of \displaystyle h=10m above the ground at time \displaystyle t=0, is at a height \displaystyle h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2 at time \displaystyle t (measured in seconds) What is the speed of the ball when it hits the grounds?

Übung 1.1:4

Determine the equation for the tangent and normal to the curve \displaystyle y=x^2 at the point \displaystyle (1,1).

Übung 1.1:5

Determine all the points on the curve \displaystyle y=-x^2 which have a tangent that goes through the point \displaystyle (1,1).