2.1 Linjärkombination

SamverkanLinalgLIU

Version från den 17 augusti 2010 kl. 13.02; Geoba (Diskussion | bidrag)
Hoppa till: navigering, sök

__NOTOP__

       2.1          2.2          2.3      


Läs textavsnitt 2.1 Linjärkombination.

Du har nu läst definitionen på linjärkombination och här kommer några övningar som testar om du har tagit till dig stoffet.


Övningar

Innehåll

Övning 3.1

Vi vet att \displaystyle |\boldsymbol{u}|=3, \displaystyle |\boldsymbol{v}|=4 och \displaystyle |\boldsymbol{u-v}|=5. Beräkna skalärprodukten \displaystyle \boldsymbol{u}\cdot\boldsymbol{v}.


Övning 3.2

För vilka värden på \displaystyle a är vektorerna \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}a\\ -2\\1\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}2a\\a\\-4\end{pmatrix} ortogonala?


Övning 3.3

Bestäm en enhetsvektor i \displaystyle yz-planet som är vinkelrät mot vektorn \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}1\\2\\-1\end{pmatrix}.


Övning 3.4

Bestäm en vektor som bildar lika stora vinklar med vektorerna \displaystyle \boldsymbol{v}_1=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\1\end{pmatrix}, \displaystyle \boldsymbol{v}_2=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\0\end{pmatrix} och \displaystyle \boldsymbol{v}_3=\underline{\boldsymbol{e}}\begin{pmatrix}1\\0\\0\end{pmatrix}.


Övning 3.5

Antag att \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\-3\\6\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}1\\2\\2\end{pmatrix}.

  1. Bestäm projektionen av \displaystyle \boldsymbol{u}\displaystyle \boldsymbol{v} samt dess längd, dvs \displaystyle \boldsymbol{u}_{\parallel\boldsymbol{v}} samt \displaystyle |\boldsymbol{u}_{\parallel\boldsymbol{v}}|.
  2. Bestäm \displaystyle \boldsymbol{v}_{\parallel\boldsymbol{u}} samt \displaystyle |\boldsymbol{v}_{\parallel\boldsymbol{u}}|.


Övning 3.6

Låt \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\2\\1\end{pmatrix}. Dela upp vektorn \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}7\\-2\\3\end{pmatrix} som en summa

\displaystyle \boldsymbol{u}=\boldsymbol{u}_{\parallel\boldsymbol{v}}+\boldsymbol{u}_{\perp\boldsymbol{v}},

där \displaystyle \boldsymbol{u}_{\parallel\boldsymbol{v}} är parallell med vektorn \displaystyle \boldsymbol{v} och \displaystyle \boldsymbol{u}_{\perp\boldsymbol{v}} är ortogonal mot \displaystyle \boldsymbol{v}.


Övning 3.7

Bestäm vinkeln mellan vektorerna \displaystyle \boldsymbol{u} och \displaystyle \boldsymbol{v} då man vet att \displaystyle \boldsymbol{u}+3\boldsymbol{v} är ortogonal mot \displaystyle 2\boldsymbol{u}-\boldsymbol{v} och \displaystyle \boldsymbol{u}+7\boldsymbol{v} är ortogonal mot \displaystyle 2\boldsymbol{u}+\boldsymbol{v}.



Övning 3.8

Antag att \displaystyle \boldsymbol{v}_1=\begin{pmatrix}2\\1\\-1\end{pmatrix} och \displaystyle \boldsymbol{v}_2=\begin{pmatrix}1\\1\\1\end{pmatrix}. Undersök om

a)

\displaystyle \boldsymbol{u}_1=\begin{pmatrix}4\\1\\-5\end{pmatrix}

b) \displaystyle \boldsymbol{u}_2=\begin{pmatrix}4\\3\\2\end{pmatrix} c) \displaystyle \boldsymbol{u}_3=\begin{pmatrix}-9\\-7\\-3\end{pmatrix}

kan skrivas som en linjärkombination i mängden \displaystyle \{\boldsymbol{v}_{1},\boldsymbol{v}_{2}\}.