2.1 Linjärkombination

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 49: Rad 49:
Svar|Svar till övning 3.4|
Svar|Svar till övning 3.4|
Tips och lösning|Tips och lösning till övning 3.4}}
Tips och lösning|Tips och lösning till övning 3.4}}
 +
 +
 +
<div class="ovning">
 +
===Övning 3.5===
 +
Antag att <math>\boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\-3\\6\end{pmatrix}</math> och <math>\boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}1\\2\\2\end{pmatrix}</math>.
 +
 +
# Bestäm projektionen av <math>\boldsymbol{u}</math> på <math>\boldsymbol{v}</math> samt dess längd, dvs <math>\boldsymbol{u}_{\parallel\boldsymbol{v}}</math> samt <math>|\boldsymbol{u}_{\parallel\boldsymbol{v}}|</math>.
 +
# Bestäm <math>\boldsymbol{v}_{\parallel\boldsymbol{u}}</math> samt <math>|\boldsymbol{v}_{\parallel\boldsymbol{u}}|</math>.
 +
</div>{{#NAVCONTENT:
 +
Svar|Svar till övning 3.5|
 +
Tips och lösning|Tips och lösning till övning 3.5}}

Versionen från 17 augusti 2010 kl. 12.32

       2.1          2.2          2.3      


Läs textavsnitt 2.1 Linjärkombination.

Du har nu läst definitionen på linjärkombination och här kommer några övningar som testar om du har tagit till dig stoffet.


Övningar

Innehåll

Övning 3.1

Vi vet att \displaystyle |\boldsymbol{u}|=3, \displaystyle |\boldsymbol{v}|=4 och \displaystyle |\boldsymbol{u-v}|=5. Beräkna skalärprodukten \displaystyle \boldsymbol{u}\cdot\boldsymbol{v}.


Övning 3.2

För vilka värden på \displaystyle a är vektorerna \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}a\\ -2\\1\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}2a\\a\\-4\end{pmatrix} ortogonala?


Övning 3.3

Bestäm en enhetsvektor i \displaystyle yz-planet som är vinkelrät mot vektorn \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}1\\2\\-1\end{pmatrix}.


Övning 3.4

Bestäm en vektor som bildar lika stora vinklar med vektorerna \displaystyle \boldsymbol{v}_1=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\1\end{pmatrix}, \displaystyle \boldsymbol{v}_2=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\0\end{pmatrix} och \displaystyle \boldsymbol{v}_3=\underline{\boldsymbol{e}}\begin{pmatrix}1\\0\\0\end{pmatrix}.


Övning 3.5

Antag att \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\-3\\6\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}1\\2\\2\end{pmatrix}.

  1. Bestäm projektionen av \displaystyle \boldsymbol{u}\displaystyle \boldsymbol{v} samt dess längd, dvs \displaystyle \boldsymbol{u}_{\parallel\boldsymbol{v}} samt \displaystyle |\boldsymbol{u}_{\parallel\boldsymbol{v}}|.
  2. Bestäm \displaystyle \boldsymbol{v}_{\parallel\boldsymbol{u}} samt \displaystyle |\boldsymbol{v}_{\parallel\boldsymbol{u}}|.