Inlämningsuppgifter

Förberedande kurs i matematik

Version från den 9 augusti 2012 kl. 12.42; Samuel (Diskussion | bidrag)
(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till: navigering, sök



Inlämningsuppgift 5

Euklides algoritm och diofantiska ekvationer

1. Ge ett exempel som illustrerar Lemma 1.

2. Använd Euklides algoritm för att bestämma SGD(2345, 245). Redovisa din lösning.

3. Använd Euklides algoritm till att förkorta så \displaystyle \frac{27}{2367} långt som möjligt. Redovisa din lösning.

4. Bestäm alla heltalslösningar till följande ekvationer: \displaystyle 4x + 8y=28 och \displaystyle 4x + 8y=7. Redovisa din lösning.

5. Lille Per har av sin moder fått 100 kr för att gå till konditoriet och köpa lyxsemlor till ett pris av 25kr per styck och mandelkakor till ett pris av 18 kr per styck. När han är framme i konditoriet har han hunnit glömma hur många av de två slagen bakverk han skulle köpa. Han minns dock att inga pengar skulle bli över och att antalet mandelkakor var ett udda tal. Hjälp lille Per!

Euklides algoritm och diofantiska ekvationer

1. Ge ett exempel som illustrerar Lemma 1.

2. Använd Euklides algoritm för att bestämma SGD(569, 31). Redovisa din lösning.

3. Använd Euklides algoritm till att förkorta så \displaystyle \frac{9876}{32} långt som möjligt. Redovisa din lösning.

4. Bestäm alla heltalslösningar till följande ekvationer: \displaystyle 11x + 22y=32 och \displaystyle 11x + 22y=33. Redovisa din lösning.

5. Lille Per har av sin moder fått 120 kr för att gå till konditoriet och köpa lyxsemlor till ett pris av 18kr per styck och mandelkakor till ett pris av 12 kr per styck. När han är framme i konditoriet har han hunnit glömma hur många av de två slagen bakverk han skulle köpa. Han minns dock att inga pengar skulle bli över och att han skulle köpa fler mandelkakor än lyxsemlor. Hjälp lille Per!