Processing Math: 82%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

2.1 Übungen

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche
       Theorie          Übungen      


Übung 2.1:1

Erweitere

a) 3x(x1) b) (1+xx2)xy c) x2(4y2)
d) x3y2y11xy+1  e) (x7)2 f) (5+4y)2
g) (y23x3)2 h) (5x3+3x5)2


Übung 2.1:2

Erweitere

a) (x4)(x5)3x(2x3) b) (15x)(1+15x)3(25x)(2+5x)
c) (3x+4)2(3x2)(3x8) d) (3x2+2)(3x22)(9x4+4)
e) (a+b)2+(ab)2

Übung 2.1:3

Faktorisiere und vereinfache so weit wie möglich

a) x236 b) 5x220 c) x2+6x+9
d) x210x+25 e) 18x2x3 f) 16x2+8x+1

Übung 2.1:4

Bestimme die Koeffizienten von x und x2 wenn man folgende Ausdrücke erweitert.

a) (x+2)(3x2x+5)
b) (1+x+x2+x3)(2x+x2+x4)
c) (xx3+x5)(1+3x+5x2)(27x2x4)

Übung 2.1:5

Vereinfachen so weit wie möglich

a) 1xx2x1 b) 1y22y2y24
c) (x+1)(x+2)(3x212)(x21) d) (y2+4)(y24)(y2+4y+4)(2y4)

Übung 2.1:6

Vereinfache so weit wie möglich

a) xy+x2yx  y2xy1  b) xx2+xx+32
c) 2a+ba2ab2ab d) \displaystyle \displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}

Übung 2.1:7

Vereinfache folgende Ausdrücke, sodass sie nur einen Bruch enthalten

a) \displaystyle \displaystyle \frac{2}{x+3}-\frac{2}{x+5} b) \displaystyle x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2} c) \displaystyle \displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}

Übung 2.1:8

Vereinfache folgende Ausdrücke, sodass sie nur einen Bruch enthalten

a) \displaystyle \displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ } b) \displaystyle \displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}} c) \displaystyle \displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}}