Lösung 2.1:5d

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche

Wir zerlegen zuerst jeweils Zähler und Nenner in ihre Faktoren.

Der Faktor \displaystyle y^{2}+4y+4 kann wie \displaystyle y^{2}+2\cdot 2y+2^{2} geschrieben werden, wobei wir die binomische Formel verwenden können

\displaystyle y^{2}+4y+4 = y^{2}+2\cdot 2y+2^{2} = (y+2)^{2}\textrm{.}

Der Faktor \displaystyle 2y-4 kann nicht weiter zerlegt werden, mit Ausnahme von \displaystyle 2, da \displaystyle 2y-4=2\left( y-2 \right)\,.


\displaystyle y^{2}-4 kann mit der binomischen Formel zerlegt werden:

\displaystyle y^{2}-4 = (y+2)(y-2)\,\textrm{.}

\displaystyle y^{2}+4 hingegen kann nicht weiter zerlegt werden. Wäre dies möglich, müsste es a und b geben für die gilt: \displaystyle (y+a)\cdot(y+b) = y^{2} + (a+b)\cdot y + a\cdot b, wobei \displaystyle a + b = 0 und \displaystyle a \cdot b = 4 gelten muss. Aus \displaystyle a+b=0 folgt \displaystyle a=-b. Daraus ergibt sich also, dass a und b verschiedene Vorzeichen haben müssen. Das Produkt aus zwei Zahlen mit verschiedenen Vorzeichen kann allerdings nie eine positive Zahl ergeben. Also kann \displaystyle a \cdot b nicht 4 sein, so dass es keine a und b gibt für die die Gleichung gilt.


Daher ist

\displaystyle \frac{(y^{2}+4y+4)(2y-4)}{(y^{2}+4)(y^{2}-4)} = \frac{(y+2)^{2}\cdot 2(y-2)}{(y^{2}+4)(y+2)(y-2)} = \frac{2(y+2)}{(y^{2}+4)}\,\textrm{.}