Processing Math: 82%
2.1 Übungen
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-Selected tab +Gewählter Tab)) |
K (Robot: Automated text replacement (-Not selected tab +Nicht gewählter Tab)) |
||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Nicht gewählter Tab|[[2.1 Algebraische Ausdrücke|Theorie]]}} |
{{Gewählter Tab|[[2.1 Übungen|Übungen]]}} | {{Gewählter Tab|[[2.1 Übungen|Übungen]]}} | ||
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| |
Version vom 09:41, 22. Okt. 2008
Theorie | Übungen |
Übung 2.1:1
Expand
a) | | b) | | c) | |
d) | ![]() ![]() | e) | f) | ||
g) | h) |
Übung 2.1:2
Expand
a) | | b) | |
c) | | d) | |
e) |
Übung 2.1:3
Factorise and simplify as much as possible
a) | | b) | | c) | |
d) | | e) | f) |
Übung 2.1:4
Determine the coefficients in front of
a) | |
b) | |
c) | |
Übung 2.1:5
Simplify as much as possible
a) | | b) | |
c) | | d) | |
Übung 2.1:6
Simplify as much as possible
a) | ![]() ![]() ![]() ![]() | b) | |
c) | | d) | \displaystyle \displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2} |
Übung 2.1:7
Simplify the following fractions by writing them as an expression having a common fraction sign
a) | \displaystyle \displaystyle \frac{2}{x+3}-\frac{2}{x+5} | b) | \displaystyle x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2} | c) | \displaystyle \displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2} |
Übung 2.1:8
Simplify the following fractions by writing them as an expression having a common fraction sign
a) | \displaystyle \displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ } | b) | \displaystyle \displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}} | c) | \displaystyle \displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}} |