2.1 Übungen
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Added reference to the tests at the bottom of the page) |
|||
Zeile 146: | Zeile 146: | ||
|} | |} | ||
</div>{{#NAVCONTENT:Antwort|Antwort 2.1:8|Lösung a|Lösung 2.1:8a|Lösung b|Lösung 2.1:8b|Lösung c|Lösung 2.1:8c}} | </div>{{#NAVCONTENT:Antwort|Antwort 2.1:8|Lösung a|Lösung 2.1:8a|Lösung b|Lösung 2.1:8b|Lösung c|Lösung 2.1:8c}} | ||
+ | |||
+ | |||
+ | '''Diagnostische Prüfung und Schlussprüfung''' | ||
+ | |||
+ | Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in Deiner Student Lounge. |
Version vom 07:26, 2. Sep. 2009
Theorie | Übungen |
Übung 2.1:1
Erweitere
a) | \displaystyle 3x(x-1) | b) | \displaystyle (1+x-x^2)xy | c) | \displaystyle -x^2(4-y^2) |
d) | \displaystyle x^3y^2\left(\displaystyle \frac{1}{y} - \frac{1}{xy}+1\right) | e) | \displaystyle (x-7)^2 | f) | \displaystyle (5+4y)^2 |
g) | \displaystyle (y^2-3x^3)^2 | h) | \displaystyle (5x^3+3x^5)^2 |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Lösung e
Lösung f
Lösung g
Lösung h
Übung 2.1:2
Erweitere
a) | \displaystyle (x-4)(x-5)-3x(2x-3) | b) | \displaystyle (1-5x)(1+15x)-3(2-5x)(2+5x) |
c) | \displaystyle (3x+4)^2-(3x-2)(3x-8) | d) | \displaystyle (3x^2+2)(3x^2-2)(9x^4+4) |
e) | \displaystyle (a+b)^2+(a-b)^2 |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Lösung e
Übung 2.1:3
Faktorisiere und vereinfache so weit wie möglich
a) | \displaystyle x^2-36 | b) | \displaystyle 5x^2-20 | c) | \displaystyle x^2+6x+9 |
d) | \displaystyle x^2-10x+25 | e) | \displaystyle 18x-2x^3 | f) | \displaystyle 16x^2+8x+1 |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Lösung e
Lösung f
Übung 2.1:4
Bestimme die Koeffizienten von \displaystyle \,x\, und \displaystyle \,x^2\, wenn man folgende Ausdrücke erweitert.
a) | \displaystyle (x+2)(3x^2-x+5) |
b) | \displaystyle (1+x+x^2+x^3)(2-x+x^2+x^4) |
c) | \displaystyle (x-x^3+x^5)(1+3x+5x^2)(2-7x^2-x^4) |
Übung 2.1:5
Vereinfachen so weit wie möglich
a) | \displaystyle \displaystyle \frac{1}{x-x^2}-\displaystyle \frac{1}{x} | b) | \displaystyle \displaystyle \frac{1}{y^2-2y}-\displaystyle \frac{2}{y^2-4} |
c) | \displaystyle \displaystyle \frac{(3x^2-12)(x^2-1)}{(x+1)(x+2)} | d) | \displaystyle \displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)} |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Übung 2.1:6
Vereinfache so weit wie möglich
a) | \displaystyle \left(x-y+\displaystyle\frac{x^2}{y-x}\right) \displaystyle \left(\displaystyle\frac{y}{2x-y}-1\right) | b) | \displaystyle \displaystyle \frac{x}{x-2}+\displaystyle \frac{x}{x+3}-2 |
c) | \displaystyle \displaystyle \frac{2a+b}{a^2-ab}-\frac{2}{a-b} | d) | \displaystyle \displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2} |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Übung 2.1:7
Vereinfache folgende Ausdrücke, sodass sie nur einen Bruch enthalten
a) | \displaystyle \displaystyle \frac{2}{x+3}-\frac{2}{x+5} | b) | \displaystyle x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2} | c) | \displaystyle \displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2} |
Übung 2.1:8
Vereinfache folgende Ausdrücke, sodass sie nur einen Bruch enthalten
a) | \displaystyle \displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ } | b) | \displaystyle \displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}} | c) | \displaystyle \displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}} |
Diagnostische Prüfung und Schlussprüfung
Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in Deiner Student Lounge.