16.10 Projektioner och speglingar med basbyte

SamverkanLinalgLIU

Version från den 12 september 2011 kl. 14.03; Geoba (Diskussion | bidrag)
Hoppa till: navigering, sök
       16.1          16.2          16.3          16.4          16.5          16.6          16.7          16.8          16.9          16.10          16.11      


Läs textavsnitt 16.10 Projektioner och speglingar med basbyte


Innan Du börjar arbeta med detta moment så kan Du visualisera ortogonal projektion med hjälp av basbyte genom att klicka på bilden.

alt=Alt textBildinformation


Innan Du börjar arbeta med detta moment så kan Du visualisera spegling med hjälp av basbyte genom att klicka på bilden.

alt=Alt textBildinformation


Övningar

17.35. Låt \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en ON-bas i planet. Inför en ny bas \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{f}_1, \boldsymbol{f}_2\} genom

\displaystyle

\left\{\begin{array}{lcl}\boldsymbol{f}_1&=&\frac{1}{\sqrt5}(\boldsymbol{e}_1+2\boldsymbol{e}_2)\\ \boldsymbol{f}_2&=&\frac{1}{\sqrt5}(2\boldsymbol{e}_1-\boldsymbol{e}_2)\end{array}\right.

Låt \displaystyle F vara ortogonal projektion på linjen \displaystyle x_1+2x_2=0. Ange \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{f}} och beräkna med hjälp av bassambandet \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{e}}.

Ortogonal projektion med hjälp av basbyte


17.36. Låt \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en ON-bas i planet. Inför en ny bas \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{f}_1, \boldsymbol{f}_2\} genom

\displaystyle

\left\{\begin{array}{lcl}\boldsymbol{f}_1&=&\frac{1}{\sqrt5}(\boldsymbol{e}_1+2\boldsymbol{e}_2)\\ \boldsymbol{f}_2&=&\frac{1}{\sqrt5}(2\boldsymbol{e}_1-\boldsymbol{e}_2)\end{array}\right.

Låt \displaystyle F vara spegling i linjen \displaystyle x_1+2x_2=0. Ange \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{f}} och beräkna med hjälp av bassambandet \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{e}}.


Reflektionsuppgifter

1. Vad är vitsen med att ha basbyte mellan ON-baser?

2. Beskriv kolonnerna i \displaystyle A_{\boldsymbol{e}} resp \displaystyle A_{\boldsymbol{f}}.