16.6 Sammansatta linjära avbildningar
SamverkanLinalgLIU
16.1 | 16.2 | 16.3 | 16.4 | 16.5 | 16.6 | 16.7 | 16.8 | 16.9 | 16.10 | 16.11 |
Läs textavsnitt 16.6 Sammansatta linjära avbildningar
Övningar
17.18. Låt \displaystyle \underline{\boldsymbol{e}} vara en bas för \displaystyle V, där dim \displaystyle V=2. Antag att \displaystyle F:V\rightarrow V är en linjär avbildning som uppfyller
Bestäm matrisen för \displaystyle F^2 i basen \displaystyle \underline{\boldsymbol{e}}.
Tips och lösning
17.19. Bestäm matrisen till den linjära avbildningen \displaystyle {\color{Blue}F}:{\bf R^3}\rightarrow{\bf R}^3 som i basen \displaystyle \underline{\boldsymbol{e}} ges av
- Visa att \displaystyle F är linjär.
- Bestäm \displaystyle F^{-1}:s matris i basen \displaystyle \underline{\boldsymbol{e}}
Tips och lösning
Reflektionsuppgifter
Hur påverkas matrisen för en sammansatt avbildning om man kastar om ordningsföljden mellan avbildningarna?