Slaskövning9

SamverkanLinalgLIU

Version från den 2 september 2010 kl. 11.52; Geoba (Diskussion | bidrag)
Hoppa till: navigering, sök

Innehåll

Övning 9.1

Beräkna följande determinanter

a) \displaystyle \begin{vmatrix}1&-2\\-2&4\end{vmatrix} b) \displaystyle \begin{vmatrix}2&3&4\\0&5&6\\0&0&7\end{vmatrix} c) \displaystyle \begin{vmatrix}1&2&0\\3&0&2\\0&0&1\end{vmatrix}



Övning 9.2

Beräkna följande determinanter

a) \displaystyle \begin{vmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{vmatrix} b) \displaystyle \begin{vmatrix}3&2&2\\3&1&3\\1&0&1\end{vmatrix}


Övning 9.3

Bestäm determinanten

\displaystyle

\left| \begin{array}{rrrr}1&2&3&4\\0&1&2&3\\-1&0&2&2\\4&3&2&-1\end{array}\right|.



Övning 9.4

Lös följande ekvationer

a) \displaystyle \left|\begin{array}{rrrr}x&2&1&2\\2&1&2&x\\1&2&x&2\\2&x&2&1\end{array}\right|=0 b) \displaystyle \begin{vmatrix}{2-t}&{-2}&{-1}\\{-2}&{2-t}&1\\{-1}&1&{5-t}\end{vmatrix}=0



Övning 9.5

Avgör om följande matriser är inverterbara

a) \displaystyle \begin{pmatrix}1&2&1\\0&2&0\\3&6&4\end{pmatrix} b) \displaystyle \begin{pmatrix}2&1&1\\{-1}&2&3\\0&5&7 \end{pmatrix}


Övning 9.6

Bestäm de värden på \displaystyle a för vilka matrisen \displaystyle \begin{pmatrix}2&2&a\\1&2&0\\-1&2&1\end{pmatrix} är inverterbar.